
Package: genio (via r-universe)
August 24, 2024

Title Genetics Input/Output Functions

Version 1.1.4.9000

Description Implements readers and writers for file formats associated
with genetics data. Reading and writing Plink BED/BIM/FAM and
GCTA binary GRM formats is fully supported, including a
lightning-fast BED reader and writer implementations. Other
functions are 'readr' wrappers that are more constrained,
user-friendly, and efficient for these particular applications;
handles Plink and Eigenstrat tables (FAM, BIM, IND, and SNP
files). There are also make functions for FAM and BIM tables
with default values to go with simulated genotype data.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Imports readr (>= 2.0.0), tibble, dplyr, Rcpp, R.utils

LinkingTo Rcpp

Suggests testthat, knitr, rmarkdown, BEDMatrix, snpStats, lobstr

VignetteBuilder knitr

URL https://github.com/OchoaLab/genio

BugReports https://github.com/OchoaLab/genio/issues

Repository https://ochoalab.r-universe.dev

RemoteUrl https://github.com/ochoalab/genio

RemoteRef HEAD

RemoteSha c5fa573ea5d39db82d23ead18424c54d95142fb1

Contents
count_lines . 2
delete_files_grm . 3

1

https://github.com/OchoaLab/genio
https://github.com/OchoaLab/genio/issues

2 count_lines

delete_files_phen . 4
delete_files_plink . 5
genio . 6
geno_to_char . 7
het_reencode_bed . 8
ind_to_fam . 9
make_bim . 10
make_fam . 12
read_bed . 13
read_bim . 15
read_eigenvec . 16
read_fam . 18
read_grm . 19
read_ind . 21
read_matrix . 22
read_phen . 23
read_plink . 25
read_snp . 26
require_files_grm . 27
require_files_phen . 28
require_files_plink . 29
sex_to_char . 30
sex_to_int . 31
sim_and_write_plink . 32
symlink . 33
tidy_kinship . 34
write_bed . 35
write_bim . 37
write_eigenvec . 38
write_fam . 40
write_grm . 41
write_ind . 43
write_matrix . 44
write_phen . 45
write_plink . 46
write_snp . 48

Index 50

count_lines Count the number of lines of a file

Description

This function returns the number of lines in a file. It is intended to result in fast retrieval of numbers
of individuals (from FAM or equivalent files) or loci (BIM or equivalent files) when the input files
are extremely large and no other information is required from these files. This code uses C++ to
quickly counts lines (like linux’s wc -l but this one is cross-platform).

delete_files_grm 3

Usage

count_lines(file, ext = NA, verbose = TRUE)

Arguments

file The input file path to read (a string).

ext An optional extension. If NA (default), file is expected to exist as-is. Otherwise,
if file doesn’t exist and the extension was missing, then this extension is added.

verbose If TRUE (default), writes a message reporting the file whose lines are being
counted (after adding extensions if it was needed).

Details

Note: this function does not work correctly with compressed files (they are not uncompressed prior
to counting newlines).

Value

The number of lines in the file.

Examples

count number of individuals from an existing plink *.fam file
file <- system.file("extdata", 'sample.fam', package = "genio", mustWork = TRUE)
n_ind <- count_lines(file)
n_ind

count number of loci from an existing plink *.bim file
file <- system.file("extdata", 'sample.bim', package = "genio", mustWork = TRUE)
m_loci <- count_lines(file)
m_loci

delete_files_grm Delete all GCTA binary GRM files

Description

This function deletes each of the GCTA binary GRM files (grm.bin, grm.N.bin, and grm.id ex-
tensions) given the shared base file path, warning if any of the files did not exist or if any were not
successfully deleted.

Usage

delete_files_grm(file)

4 delete_files_phen

Arguments

file The shared file path (excluding extensions: grm.bin, grm.N.bin, or grm.id).

Value

Nothing

Examples

if you want to delete "data.grm.bin", "data.grm.N.bin" and "data.grm.id", run like this:
delete_files_grm("data")

The following example is more awkward
because (only for these examples) the package must create *temporary* files to actually delete

create dummy GRM files
file <- tempfile('delete-me-test') # no extension
add each extension and create empty files
file.create(paste0(file, '.grm.bin'))
file.create(paste0(file, '.grm.N.bin'))
file.create(paste0(file, '.grm.id'))

delete the GRM files we just created
delete_files_grm(file)

delete_files_phen Delete PHEN files

Description

This function deletes a PHEN files given the base file path (without extension), warning if the file
did not exist or if it was not successfully deleted.

Usage

delete_files_phen(file)

Arguments

file The base file path (excluding phen extension).

Value

Nothing

delete_files_plink 5

Examples

if you want to delete "data.phen", run like this:
delete_files_phen("data")

The following example is more awkward
because (only for these examples) the package must create a *temporary* file to actually delete

create dummy PHEN files
file <- tempfile('delete-me-test') # no extension
add extension and create an empty file
file.create(paste0(file, '.phen'))

delete the PHEN file we just created
delete_files_phen(file)

delete_files_plink Delete all Plink binary files

Description

This function deletes each of the Plink binary files (bed, bim, fam extensions) given the shared base
file path, warning if any of the files did not exist or if any were not successfully deleted.

Usage

delete_files_plink(file)

Arguments

file The shared file path (excluding extensions: bed, bim, fam).

Value

Nothing

Examples

if you want to delete "data.bed", "data.bim" and "data.fam", run like this:
delete_files_plink("data")

The following example is more awkward
because (only for these examples) the package must create *temporary* files to actually delete

create dummy BED/BIM/FAM files
file <- tempfile('delete-me-test') # no extension
add each extension and create empty files
file.create(paste0(file, '.bed'))
file.create(paste0(file, '.bim'))

6 genio

file.create(paste0(file, '.fam'))

delete the BED/BIM/FAM files we just created
delete_files_plink(file)

genio genio (GENetics I/O): A package for reading and writing genetics data

Description

This package fully supports reading and writing Plink BED/BIM/FAM and GCTA GRM files, as
illustrated below. These functions make it easy to create dummy annotation tables to go with simu-
lated genotype data too. Lastly, there is functionality to read and write Eigenstrat tables.

Author(s)

Maintainer: Alejandro Ochoa <alejandro.ochoa@duke.edu> (ORCID)

See Also

Useful links:

• https://github.com/OchoaLab/genio

• Report bugs at https://github.com/OchoaLab/genio/issues

Examples

read existing BED/BIM/FAM files

first get path to BED file
file <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)

read genotypes and annotation tables
plink_data <- read_plink(file)
genotypes
X <- plink_data$X
locus annotations
bim <- plink_data$bim
individual annotations
fam <- plink_data$fam

the same works without .bed extension
file <- sub('\\.bed$', '', file) # remove extension
plink_data <- read_plink(file)

write data into new BED/BIM/FAM files
file_out <- tempfile('delete-me-example')
write_plink(file_out, X, bim, fam)

https://orcid.org/0000-0003-4928-3403
https://github.com/OchoaLab/genio
https://github.com/OchoaLab/genio/issues

geno_to_char 7

delete example files when done
delete_files_plink(file_out)

read sample GRM files
file <- system.file("extdata", 'sample.grm.bin', package = "genio", mustWork = TRUE)
file <- sub('\\.grm\\.bin$', '', file) # remove extension from this path on purpose
obj <- read_grm(file)
the kinship matrix
kinship <- obj$kinship
the pair sample sizes matrix
M <- obj$M
the fam and ID tibble
fam <- obj$fam

write data into new GRM files
write_grm(file_out, kinship, M = M, fam = fam)

delete example files when done
delete_files_grm(file_out)

other functions not shown here allow reading and writing individual files,
creating dummy tables to go with simulated genotypes,
requiring the existence of these files,
and reading and writing of Eigenstrat tables too.

geno_to_char Convert a genotype matrix from numeric to character codes

Description

Given the genotype matrix X and bim table (as they are parsed by read_plink(), this outputs a
matrix of the same dimensions as X but with the numeric codes (all values in 0, 1, 2) translated
to human-readable character codes (such as ’A/A’, ’A/G’, ’G/G’, depending on which are the two
alleles at the locus as given in the bim table, see return value).

Usage

geno_to_char(X, bim)

Arguments

X The genotype matrix. It must have values only in 0, 1, 2, and NA.
bim The variant table. It is required to have the same number of rows as X, and to

have at least two named columns alt and ref (alleles 1 and 2 in a plink BIM
table). These alleles can be arbitrary strings (i.e. not just SNPs but also indels,
any single or multicharacter code, or even blank strings) except the forward slash
character ("/") is not allowed anywhere in these strings (function stops if a slash
is present), since in the output it is the delimiter string. ref and alt alleles must
be different at each locus.

8 het_reencode_bed

Value

The genotype matrix reencoded as strings. At one locus, if the two alleles (alt and ref) are ’A’ and
’B’, then the genotypes in the input are encoded as characters as: 0 -> ’A/A’, 1 -> ’B/A’, and 2 ->
’B/B’. Thus, the numeric encoding counts the reference allele dosage. NA values in input X remain
NA in the output. If the input genotype matrix had row and column names, these are inherited by the
output matrix.

See Also

read_plink(), read_bed(), read_bim().

Examples

a numeric/dosage genotype matrix with two loci (rows)
and three individuals (columns)
X <- rbind(0:2, c(0, NA, 2))
corresponding variant table (minimal case with just two required columns)
library(tibble)
bim <- tibble(alt = c('C', 'GT'), ref = c('A', 'G'))

genotype matrix translated as characters
X_char <- geno_to_char(X, bim)
X_char

het_reencode_bed Reencode a Plink BED file to (twice) heterozygote indicators

Description

Given an existing plink-formatted BED (binary) file, this function reads it, transforms genotypes on
the go, and writes a new BED file such that heterozygotes are encoded as 2 and homozygotes as 0.
In other words, it transforms the numerical genotype values c(0, 1, 2, NA) into c(0, 2, 0, NA).
Heterozygotes are encoded as 2, rather than 1, so existing code for calculating allele frequencies and
related quantities, such as kinship estimates, works on this data as intended. Intended to transform
extremely large files that should not be loaded entirely into memory at once.

Usage

het_reencode_bed(
file_in,
file_out,
m_loci = NA,
n_ind = NA,
make_bim_fam = TRUE,
verbose = TRUE

)

ind_to_fam 9

Arguments

file_in Input file path. *.bed extension may be omitted (will be added automatically if
file doesn’t exist but file.bed does).

file_out Output file path. *.bed extension may be omitted (will be added automatically
if it is missing).

m_loci Number of loci in the input genotype table. If NA, it is deduced from the paired
*.bim file

n_ind Number of individuals in the input genotype table. If NA, it is deduced from the
paired *.fam file

make_bim_fam If TRUE, create symbolic links (using symlink()) for the output file’s *.bim and
*.fam that link to the corresponding input files. Otherwise only the *.bed file is
created.

verbose If TRUE (default) function reports the path of the files being read and written to
(after autocompleting the extension).

See Also

read_bed() and write_bed(), from which much of the code of this function is derived, which
explains additional BED format requirements.

Examples

define input and output, both of which will also work without extension
read an existing Plink *.bed file
file_in <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)
write to a *temporary* location for this example
file_out <- tempfile('delete-me-example')

in default mode, deduces dimensions from paired *.bim and *.fam tables
het_reencode_bed(file_in, file_out)

delete output when done
delete_files_plink(file_out)

ind_to_fam Convert an Eigenstrat IND tibble into a Plink FAM tibble

Description

This function takes an existing IND tibble and creates a FAM tibble with the same information and
dummy values for missing data. In particular, the output FAM tibble will contain these columns
with these contents (IND only contain id, sex, and label, so there is no loss of information):

• fam: IND label

• id: IND id

10 make_bim

• pat: 0 (missing paternal ID)

• mat: 0 (missing maternal ID)

• sex: IND sex converted to Plink integer codes via sex_to_int()

• peno: 0 (missing phenotype)

Usage

ind_to_fam(ind)

Arguments

ind The input Eigenstrat IND tibble to convert.

Value

A Plink FAM tibble.

See Also

sex_to_int()

Eigenstrat IND format reference: https://github.com/DReichLab/EIG/tree/master/CONVERTF

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

create a sample IND tibble
library(tibble)
ind <- tibble(

id = 1:3,
sex = c('U', 'M', 'F'),
label = c(1, 1, 2)

)
convert to FAM
fam <- ind_to_fam(ind)
inspect:
fam

make_bim Create a Plink BIM tibble

Description

This function simplifies the creation of Plink BIM-formatted tibbles, which autocompletes missing
information if a partial tibble is provided, or generates a completely made up tibble if the number of
individuals is provided. The default values are most useful for simulated genotypes, where IDs can
be made up but must be unique, and there are no chromosomes, positions, or particular reference or
alternative alleles.

https://github.com/DReichLab/EIG/tree/master/CONVERTF
https://www.cog-genomics.org/plink/1.9/formats#fam

make_bim 11

Usage

make_bim(tib, n = NA)

Arguments

tib The input tibble (optional). Missing columns will be autocompleted with rea-
sonable values that are accepted by Plink and other external software. If missing,
all will be autocompleted, but n is required.

n The desired number of loci (rows). Required if tib is missing; otherwise it is
ignored.

Details

Autocompleted column values:

• chr: 1 (all data is on a single chromosome)

• id: 1:n

• posg: 0 (missing)

• pos: 1:n

• ref: 1

• alt: 2

Note that n is either given directly or obtained from the input tibble.

Value

The input tibble with autocompleted columns and columns in default order, or the made up tibble
if only the number of individuals was provided. The output begins with the standard columns in
standard order: chr, id, posg, pos, ref, alt. Additional columns in the input tibble are preserved but
placed after the standard columns.

See Also

Plink BIM format reference: https://www.cog-genomics.org/plink/1.9/formats#bim

Examples

create a synthetic tibble for 10 loci
(most common use case)
bim <- make_bim(n = 10)

manually create a partial tibble with only chromosomes defined
library(tibble)
bim <- tibble(chr = 0:2)
autocomplete the rest of the columns
bim <- make_bim(bim)

https://www.cog-genomics.org/plink/1.9/formats#bim

12 make_fam

make_fam Create a Plink FAM tibble

Description

This function simplifies the creation of Plink FAM-formatted tibbles, which autocompletes missing
information if a partial tibble is provided, or generates a completely made up tibble if the number
of individuals is provided. The default values are most useful for simulated genotypes, where IDs
can be made up but must be unique, and there are no parents, families, gender, or phenotype.

Usage

make_fam(tib, n = NA)

Arguments

tib The input tibble (optional). Missing columns will be autocompleted with rea-
sonable values that are accepted by Plink and other external software. If missing,
all will be autocompleted, but n is required.

n The desired number of individuals (rows). Required if tib is missing; otherwise
it is ignored.

Details

Autocompleted column values:

• fam: 1:n

• id: 1:n

• pat: 0 (missing)

• mat: 0 (missing)

• sex: 0 (missing)

• pheno: 0 (missing)

Note that n is either given directly or obtained from the input tibble.

Value

The input tibble with autocompleted columns and columns in default order, or the made up tibble
if only the number of individuals was provided. The output begins with the standard columns in
standard order: fam, id, pat, mat, sex, pheno. Additional columns in the input tibble are preserved
but placed after the standard columns.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

https://www.cog-genomics.org/plink/1.9/formats#fam

read_bed 13

Examples

create a synthetic tibble for 10 individuals
(most common use case)
fam <- make_fam(n = 10)

manually create a partial tibble with only phenotypes defined
library(tibble)
fam <- tibble(pheno = 0:2)
autocomplete the rest of the columns
fam <- make_fam(fam)

read_bed Read a genotype matrix in Plink BED format

Description

This function reads genotypes encoded in a Plink-formatted BED (binary) file, returning them in a
standard R matrix containing genotypes encoded numerically as dosages (values in c(0, 1, 2, NA
)). Each genotype per locus (m loci) and individual (n total) counts the number of reference alleles,
or NA for missing data. No *.fam or *.bim files are read by this basic function. Since BED does not
encode the data dimensions internally, these values must be provided by the user.

Usage

read_bed(
file,
names_loci = NULL,
names_ind = NULL,
m_loci = NA,
n_ind = NA,
ext = "bed",
verbose = TRUE

)

Arguments

file Input file path. *.bed extension may be omitted (will be added automatically if
file doesn’t exist but file.bed does). See ext option below.

names_loci Vector of loci names, to become the row names of the genotype matrix. If
provided, its length sets m_loci below. If NULL, the returned genotype matrix
will not have row names, and m_loci must be provided.

names_ind Vector of individual names, to become the column names of the genotype ma-
trix. If provided, its length sets n_ind below. If NULL, the returned genotype
matrix will not have column names, and n_ind must be provided.

14 read_bed

m_loci Number of loci in the input genotype table. Required if names_loci = NULL,
as its value is not deducible from the BED file itself. Ignored if names_loci is
provided.

n_ind Number of individuals in the input genotype table. Required if names_ind =
NULL, as its value is not deducible from the BED file itself. Ignored if names_ind
is provided.

ext The desired file extension (default "bed"). Ignored if file points to an existing
file. Set to NA to force file to exist as-is.

verbose If TRUE (default) function reports the path of the file being read (after autocom-
pleting the extension).

Details

The code enforces several checks to validate data given the requested dimensions. Errors are thrown
if file terminates too early or does not terminate after genotype matrix is filled. In addition, as each
locus is encoded in an integer number of bytes, and each byte contains up to four individuals, bytes
with fewer than four are padded. To agree with other software (plink2, BEDMatrix), byte padding
values are ignored (may take on any value without causing errors).

This function only supports locus-major BED files, which are the standard for modern data. Format
is validated via the BED file’s magic numbers (first three bytes of file). Older BED files can be
converted using Plink.

Value

The m-by-n genotype matrix.

See Also

read_plink() for reading a set of BED/BIM/FAM files.

geno_to_char() for translating numerical genotypes into more human-readable character encod-
ings.

Plink BED format reference: https://www.cog-genomics.org/plink/1.9/formats#bed

Examples

first obtain data dimensions from BIM and FAM files
all file paths
file_bed <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)
file_bim <- system.file("extdata", 'sample.bim', package = "genio", mustWork = TRUE)
file_fam <- system.file("extdata", 'sample.fam', package = "genio", mustWork = TRUE)
read annotation tables
bim <- read_bim(file_bim)
fam <- read_fam(file_fam)

read an existing Plink *.bim file
pass locus and individual IDs as vectors, setting data dimensions too
X <- read_bed(file_bed, bimid, famid)
X

https://www.cog-genomics.org/plink/1.9/formats#bed

read_bim 15

can specify without extension
file_bed <- sub('\\.bed$', '', file_bed) # remove extension from this path on purpose
file_bed # verify .bed is missing
X <- read_bed(file_bed, bimid, famid) # loads too!
X

read_bim Read Plink *.bim files

Description

This function reads a standard Plink *.bim file into a tibble with named columns. It uses readr::read_table()
to do it efficiently.

Usage

read_bim(file, verbose = TRUE)

Arguments

file Input file (whatever is accepted by readr::read_table()). If file as given does
not exist and is missing the expected *.bim extension, the function adds the .bim
extension and uses that path if that file exists. Additionally, the .gz extension is
added automatically if the file (after *.bim extension is added as needed) is still
not found and did not already contain the .gz extension and adding it points to
an existing file.

verbose If TRUE (default) function reports the path of the file being loaded (after auto-
completing the extensions).

Value

A tibble with columns: chr, id, posg, pos, alt, ref.

See Also

read_plink() for reading a set of BED/BIM/FAM files.

Plink BIM format references: https://www.cog-genomics.org/plink/1.9/formats#bim https:
//www.cog-genomics.org/plink/2.0/formats#bim

Examples

to read "data.bim", run like this:
bim <- read_bim("data")
this also works
bim <- read_bim("data.bim")

The following example is more awkward

https://www.cog-genomics.org/plink/1.9/formats#bim
https://www.cog-genomics.org/plink/2.0/formats#bim
https://www.cog-genomics.org/plink/2.0/formats#bim

16 read_eigenvec

because package sample data has to be specified in this weird way:

read an existing Plink *.bim file
file <- system.file("extdata", 'sample.bim', package = "genio", mustWork = TRUE)
bim <- read_bim(file)
bim

can specify without extension
file <- sub('\\.bim$', '', file) # remove extension from this path on purpose
file # verify .bim is missing
bim <- read_bim(file) # loads too!
bim

read_eigenvec Read Plink eigenvec file

Description

This function reads a Plink eigenvec file, parsing columns strictly. First two must be ’fam’ and ’id’,
which are strings, and all remaining columns (eigenvectors) must be numeric.

Usage

read_eigenvec(
file,
ext = "eigenvec",
plink2 = FALSE,
comment = if (plink2) "" else "#",
verbose = TRUE

)

Arguments

file The input file path, potentially excluding extension.

ext File extension (default "eigenvec") can be changed if desired. Set to NA to force
file to exist as-is.

plink2 If TRUE, the header is parsed and preserved in the returned data. The first two
columns must be FID and IID, which are mandatory.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored. Passed to readr::read_table(). ’#’ (default when plink2
= FALSE) works for Plink 2 eigenvec files, which have a header lines that starts
with this character (the header is therefore ignored). However, plink2 = TRUE
forces the header to be parsed instead.

verbose If TRUE (default) function reports the path of the file being written (after auto-
completing the extension).

read_eigenvec 17

Value

A list with two elements:

• eigenvec: A numeric R matrix containing the parsed eigenvectors. If plink2 = TRUE, the
original column names will be preserved in this matrix.

• fam: A tibble with two columns, fam and id, which are the first two columns of the parsed
file. These column names are always the same even if plink2 = TRUE (i.e. they won’t be FID
or IID).

See Also

write_eigenvec() for writing an eigenvec file.

Plink 1 eigenvec format reference: https://www.cog-genomics.org/plink/1.9/formats#eigenvec

Plink 2 eigenvec format reference: https://www.cog-genomics.org/plink/2.0/formats#eigenvec

GCTA eigenvec format reference: https://cnsgenomics.com/software/gcta/#PCA

Examples

to read "data.eigenvec", run like this:
data <- read_eigenvec("data")
this also works
data <- read_eigenvec("data.eigenvec")
#
either way you get a list with these two items:
numeric eigenvector matrix
data$eigenvec
fam/id tibble
data$fam

The following example is more awkward
because package sample data has to be specified in this weird way:

read an existing *.eigenvec file created by GCTA
file <- system.file("extdata", 'sample-gcta.eigenvec', package = "genio", mustWork = TRUE)
data <- read_eigenvec(file)
numeric eigenvector matrix
data$eigenvec
fam/id tibble
data$fam

can specify without extension
file <- sub('\\.eigenvec$', '', file) # remove extension from this path on purpose
file # verify .eigenvec is missing
data <- read_eigenvec(file) # load it anyway!
data$eigenvec

read an existing *.eigenvec file created by Plink 2
file <- system.file("extdata", 'sample-plink2.eigenvec', package = "genio", mustWork = TRUE)
this version ignores header
data <- read_eigenvec(file)

https://www.cog-genomics.org/plink/1.9/formats#eigenvec
https://www.cog-genomics.org/plink/2.0/formats#eigenvec
https://cnsgenomics.com/software/gcta/#PCA

18 read_fam

numeric eigenvector matrix
data$eigenvec
fam/id tibble
data$fam

this version uses header
data <- read_eigenvec(file, plink2 = TRUE)
numeric eigenvector matrix
data$eigenvec
fam/id tibble
data$fam

read_fam Read Plink *.fam files

Description

This function reads a standard Plink *.fam file into a tibble with named columns. It uses readr::read_table()
to do it efficiently.

Usage

read_fam(file, verbose = TRUE)

Arguments

file Input file (whatever is accepted by readr::read_table()). If file as given does
not exist and is missing the expected *.fam extension, the function adds the .fam
extension and uses that path if that file exists. Additionally, the .gz extension is
added automatically if the file (after *.fam extension is added as needed) is still
not found and did not already contain the .gz extension and adding it points to
an existing file.

verbose If TRUE (default) function reports the path of the file being loaded (after auto-
completing the extensions).

Value

A tibble with columns: fam, id, pat, mat, sex, pheno.

See Also

read_plink() for reading a set of BED/BIM/FAM files.

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

https://www.cog-genomics.org/plink/1.9/formats#fam

read_grm 19

Examples

to read "data.fam", run like this:
fam <- read_fam("data")
this also works
fam <- read_fam("data.fam")

The following example is more awkward
because package sample data has to be specified in this weird way:

read an existing Plink *.fam file
file <- system.file("extdata", 'sample.fam', package = "genio", mustWork = TRUE)
fam <- read_fam(file)
fam

can specify without extension
file <- sub('\\.fam$', '', file) # remove extension from this path on purpose
file # verify .fam is missing
fam <- read_fam(file) # load it anyway!
fam

read_grm Read GCTA GRM and related plink2 binary files

Description

This function reads a GCTA Genetic Relatedness Matrix (GRM, i.e. kinship) set of files in their
binary format, returning the kinship matrix and, if available, the corresponding matrix of pair sample
sizes (non-trivial under missingness) and individuals table. Setting some options allows reading
plink2 binary kinship formats such as "king" (see examples).

Usage

read_grm(
name,
n_ind = NA,
verbose = TRUE,
ext = "grm",
shape = c("triangle", "strict_triangle", "square"),
size_bytes = 4,
comment = "#"

)

Arguments

name The base name of the input files. Files with that base, plus shared extension
(default "grm", see ext below), plus extensions .bin, .N.bin, and .id are read

20 read_grm

if they exist. Only .<ext>.bin is absolutely required; .<ext>.id can be sub-
stituted by the number of individuals (see below); .<ext>.N.bin is entirely
optional.

n_ind The number of individuals, required if the file with the extension .<ext>.id is
missing. If the file with the .<ext>.id extension is present, then this n_ind is
ignored.

verbose If TRUE (default), function reports the path of the files being loaded.

ext Shared extension for all three inputs (see name above; default "grm"). Another
useful value is "king" for KING-robust estimates produced by plink2. If NA, no
extension is added. If given ext is also present at the end of name, then it is not
added again.

shape The shape of the information to read (may be abbreviated). Default "triangle"
assumes there are n*(n+1)/2 values to read corresponding to the upper trian-
gle including the diagonal (required for GCTA GRM). "strict_triangle" assumes
there are n*(n-1)/2 values to read corresponding to the upper triangle exclud-
ing the diagonal (best for plink2 KING-robust). Lastly, "square" assumes there
are n*n values to read corresponding to the entire square matrix, ignoring sym-
metry.

size_bytes The number of bytes per number encoded. Default 4 corresponds to GCTA
GRM and plink2 "bin4", whereas plink2 "bin" requires a value of 8.

comment Character to start comments in <ext>.id file only. Default "#" helps plink2 .id
files (which have a header that starts with "#", which is therefore ignored) be
read just like plink1 and GCTA files (which do not have a header).

Value

A list with named elements:

• kinship: The symmetric n-times-n kinship matrix (GRM). Has IDs as row and column names
if the file with extension .<ext>.id exists. If shape='strict_triangle', diagonal will have
missing values.

• M: The symmetric n-times-n matrix of pair sample sizes (number of non-missing loci pairs),
if the file with extension .<ext>.N.bin exists. Has IDs as row and column names if the file
with extension .<ext>.id was available. If shape='strict_triangle', diagonal will have
missing values.

• fam: A tibble with two columns: fam and id, same as in Plink FAM files. Returned if the file
with extension .<ext>.id exists.

See Also

write_grm()

Greatly adapted from sample code from GCTA: https://cnsgenomics.com/software/gcta/
#MakingaGRM

https://cnsgenomics.com/software/gcta/#MakingaGRM
https://cnsgenomics.com/software/gcta/#MakingaGRM

read_ind 21

Examples

to read "data.grm.bin" and etc, run like this:
obj <- read_grm("data")
obj$kinship # the kinship matrix
obj$M # the pair sample sizes matrix
obj$fam # the fam and ID tibble

The following example is more awkward
because package sample data has to be specified in this weird way:

read an existing set of GRM files
file <- system.file("extdata", 'sample.grm.bin', package = "genio", mustWork = TRUE)
file <- sub('\\.grm\\.bin$', '', file) # remove extension from this path on purpose
obj <- read_grm(file)
obj$kinship # the kinship matrix
obj$M # the pair sample sizes matrix
obj$fam # the fam and ID tibble

Read sample plink2 KING-robust files (several variants).
Read both base.king.bin and base.king.id files.
All generated with "plink2 <input> --make-king <options> --out base"
(replace "base" with actual base name) with these options:
#1) "triangle bin"
data <- read_grm('base', ext = 'king', shape = 'strict', size_bytes = 8)
#2) "triangle bin4"
data <- read_grm('base', ext = 'king', shape = 'strict')
#3) "square bin"
data <- read_grm('base', ext = 'king', shape = 'square', size_bytes = 8)
#4) "square bin4"
data <- read_grm('base', ext = 'king', shape = 'square')

read_ind Read Eigenstrat *.ind files

Description

This function reads a standard Eigenstrat *.ind file into a tibble. It uses readr::read_table() to
do it efficiently.

Usage

read_ind(file, verbose = TRUE)

Arguments

file Input file (whatever is accepted by readr::read_table()). If file as given does
not exist and is missing the expected *.ind extension, the function adds the .ind
extension and uses that path if that file exists. Additionally, the .gz extension is

22 read_matrix

added automatically if the file (after *.ind extension is added as needed) is still
not found and did not already contain the .gz extension and adding it points to
an existing file.

verbose If TRUE (default), function reports the path of the file being loaded (after auto-
completing the extensions).

Value

A tibble with columns: id, sex, label.

See Also

Eigenstrat IND format reference: https://github.com/DReichLab/EIG/tree/master/CONVERTF

Examples

to read "data.ind", run like this:
ind <- read_ind("data")
this also works
ind <- read_ind("data.ind")

The following example is more awkward
because package sample data has to be specified in this weird way:

read an existing Eigenstrat *.ind file
file <- system.file("extdata", 'sample.ind', package = "genio", mustWork = TRUE)
ind <- read_ind(file)
ind

can specify without extension
file <- sub('\\.ind$', '', file) # remove extension from this path on purpose
file # verify .ind is missing
ind <- read_ind(file) # load it anyway!
ind

read_matrix Read a numerical matrix file into an R matrix

Description

Reads a matrix file under strict assumptions that it is entirely numeric and there are no row or
column names present in this file. It uses readr::read_table() to do it efficiently. Intended for
outputs such as those of admixture inference approaches.

Usage

read_matrix(file, ext = "txt", verbose = TRUE)

https://github.com/DReichLab/EIG/tree/master/CONVERTF

read_phen 23

Arguments

file Input file (whatever is accepted by readr::read_table()). If file as given does
not exist and is missing the expected extension (see ext below), the function
adds the extension and uses that path if that file exists. Additionally, the .gz ex-
tension is added automatically if the file (after the extension is added as needed)
is still not found and did not already contain the .gz extension and adding it
points to an existing file.

ext The desired file extension. Ignored if file points to an existing file. Set to NA
to force file to exist as-is.

verbose If TRUE (default) function reports the path of the file being loaded (after auto-
completing the extensions).

Value

A numeric matrix without row or column names.

See Also

write_matrix(), the inverse function.

Examples

to read "data.txt", run like this:
mat <- read_matrix("data")
this also works
mat <- read_matrix("data.txt")

The following example is more awkward
because package sample data has to be specified in this weird way:

read an existing matrix *.txt file
file <- system.file("extdata", 'sample-Q3.txt', package = "genio", mustWork = TRUE)
mat <- read_matrix(file)
mat

can specify without extension
file <- sub('\\.txt$', '', file) # remove extension from this path on purpose
file # verify .txt is missing
mat <- read_matrix(file) # load it anyway!
mat

read_phen Read *.phen files

Description

This function reads a standard *.phen file into a tibble. It uses readr::read_table() to do it
efficiently. GCTA and EMMAX use this format.

24 read_phen

Usage

read_phen(file, verbose = TRUE)

Arguments

file Input file (whatever is accepted by readr::read_table()). If file as given does
not exist and is missing the expected *.phen extension, the function adds the
.phen extension and uses that path if that file exists. Additionally, the .gz exten-
sion is added automatically if the file (after *.phen extension is added as needed)
is still not found and did not already contain the .gz extension and adding it
points to an existing file.

verbose If TRUE (default), function reports the path of the file being loaded (after auto-
completing the extensions).

Value

A tibble with columns: fam, id, pheno.

See Also

GCTA PHEN format reference: https://cnsgenomics.com/software/gcta/#GREMLanalysis

Examples

to read "data.phen", run like this:
phen <- read_phen("data")
this also works
phen <- read_phen("data.phen")

The following example is more awkward
because package sample data has to be specified in this weird way:

read an existing plink *.phen file
file <- system.file("extdata", 'sample.phen', package = "genio", mustWork = TRUE)
phen <- read_phen(file)
phen

can specify without extension
file <- sub('\\.phen$', '', file) # remove extension from this path on purpose
file # verify .phen is missing
phen <- read_phen(file) # load it anyway!
phen

https://cnsgenomics.com/software/gcta/#GREMLanalysis

read_plink 25

read_plink Read genotype and sample data in a Plink BED/BIM/FAM file set.

Description

This function reads a genotype matrix (X, encoded as reference allele dosages) and its associated
locus (bim) and individual (fam) data tables in the three Plink files in BED, BIM, and FAM formats,
respectively. All inputs must exist or an error is thrown. This function is a wrapper around the
more basic functions read_bed(), read_bim(), read_fam(), which simplifies data parsing and
additionally better guarantees data integrity. Below suppose there are m loci and n individuals.

Usage

read_plink(file, verbose = TRUE)

Arguments

file Input file path, without extensions (each of .bed, .bim, .fam extensions will be
added automatically as needed). Alternatively, input file path may have .bed
extension (but not .bim, .fam, or other extensions).

verbose If TRUE (default), function reports the paths of the files being read (after auto-
completing the extensions).

Value

A named list with items in this order: X (genotype matrix, see description in return value of
read_bed()), bim (tibble, see read_bim()), fam (tibble, see read_fam()). X has row and column
names corresponding to the id values of the bim and fam tibbles.

See Also

read_bed(), read_bim(), and read_fam() for individual parsers of each input table, including a
description of each object returned.

geno_to_char() for translating numerical genotypes into more human-readable character encod-
ings.

Plink BED/BIM/FAM format reference: https://www.cog-genomics.org/plink/1.9/formats

Examples

to read "data.bed" etc, run like this:
obj <- read_plink("data")
this also works
obj <- read_plink("data.bed")
#
you get a list with these three items:
genotypes
obj$X

https://www.cog-genomics.org/plink/1.9/formats

26 read_snp

locus annotations
obj$bim
individual annotations
obj$fam

The following example is more awkward
because package sample data has to be specified in this weird way:

first get path to BED file
file <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)

read genotypes and annotation tables
plink_data <- read_plink(file)
genotypes
plink_data$X
locus annotations
plink_data$bim
individual annotations
plink_data$fam

the same works without .bed extension
file <- sub('\\.bed$', '', file) # remove extension
it works!
plink_data <- read_plink(file)

read_snp Read Eigenstrat *.snp files

Description

This function reads a standard Eigenstrat *.snp file into a tibble. It uses readr::read_table() to
do it efficiently.

Usage

read_snp(file, verbose = TRUE)

Arguments

file Input file (whatever is accepted by readr::read_table()). If file as given does
not exist and is missing the expected *.snp extension, the function adds the .snp
extension and uses that path if that file exists. Additionally, the .gz extension is
added automatically if the file (after *.snp extension is added as needed) is still
not found and did not already contain the .gz extension and adding it points to
an existing file.

verbose If TRUE (default), function reports the path of the file being loaded (after auto-
completing the extensions).

require_files_grm 27

Value

A tibble with columns: id, chr, posg, pos, ref, alt

See Also

Eigenstrat SNP format reference: https://github.com/DReichLab/EIG/tree/master/CONVERTF

Examples

to read "data.snp", run like this:
snp <- read_snp("data")
this also works
snp <- read_snp("data.snp")

The following example is more awkward
because package sample data has to be specified in this weird way:

read an existing Eigenstrat *.snp file
file <- system.file("extdata", 'sample.snp', package = "genio", mustWork = TRUE)
snp <- read_snp(file)
snp

can specify without extension
file <- sub('\\.snp$', '', file) # remove extension from this path on purpose
file # verify .snp is missing
snp <- read_snp(file) # load it anyway!
snp

require_files_grm Require that GCTA binary GRM files are present

Description

This function checks that each of the GCTA binary GRM files (grm.bin, grm.N.bin, and grm.id
extensions) are present, given the shared base file path, stopping with an informative message if any
of the files is missing. This function aids troubleshooting, as various downstream external software
report missing files differently and sometimes using confusing or obscure messages.

Usage

require_files_grm(file)

Arguments

file The shared file path (excluding extensions: grm.bin, grm.N.bin, or grm.id).

Value

Nothing

https://github.com/DReichLab/EIG/tree/master/CONVERTF

28 require_files_phen

Examples

to require all of "data.grm.bin", "data.grm.N.bin", and "data.grm.id", run like this:
(stops if any of the three files is missing)
require_files_grm("data")

The following example is more awkward
because package sample data has to be specified in this weird way:

check that the samples we want exist
start with bed file
file <- system.file("extdata", 'sample.grm.bin', package = "genio", mustWork = TRUE)
remove extension
file <- sub('\\.grm\\.bin$', '', file)
since all sample.grm.{bin,N.bin,id} files exist, this will not stop with error messages:
require_files_grm(file)

require_files_phen Require that PHEN file is present

Description

This function checks that the PHEN file is present, given the base file path, stopping with an infor-
mative message if the file is missing. This function aids troubleshooting, as various downstream
external software report missing files differently and sometimes using confusing or obscure mes-
sages.

Usage

require_files_phen(file)

Arguments

file The base file path (excluding phen extensions).

Value

Nothing

Examples

to require "data.phen", run like this:
(stops if file is missing)
require_files_phen("data")

The following example is more awkward
because package sample data has to be specified in this weird way:

check that the samples we want exist

require_files_plink 29

get path to an existing phen file
file <- system.file("extdata", 'sample.phen', package = "genio", mustWork = TRUE)
remove extension
file <- sub('\\.phen$', '', file)
since sample.phen file exist, this will not stop with error messages:
require_files_phen(file)

require_files_plink Require that Plink binary files are present

Description

This function checks that each of the Plink binary files (BED/BIM/FAM extensions) are present,
given the shared base file path, stopping with an informative message if any of the files is missing.
This function aids troubleshooting, as various downstream external software report missing files
differently and sometimes using confusing or obscure messages.

Usage

require_files_plink(file)

Arguments

file The shared file path (excluding extensions bed, bim, fam).

Value

Nothing

Examples

to require all of "data.bed", "data.bim", and "data.fam", run like this:
(stops if any of the three files is missing)
require_files_plink("data")

The following example is more awkward
because package sample data has to be specified in this weird way:

check that the samples we want exist
start with bed file
file <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)
remove extension
file <- sub('\\.bed$', '', file)
since all sample.{bed,bim,fam} files exist, this will not stop with error messages:
require_files_plink(file)

30 sex_to_char

sex_to_char Convert integer sex codes to character codes

Description

This function accepts the integer sex codes accepted by Plink and turns them into the character
codes accepted by Eigenstrat. Only upper-case characters are returned. Cases outside the table
below are mapped to U (unknown) with a warning. The correspondence is:

• 0: U (unknown)

• 1: M (male)

• 2: F (female)

Usage

sex_to_char(sex)

Arguments

sex Integer vector of sex codes

Value

The converted character vector of sex codes

See Also

sex_to_int()

Eigenstrat IND format reference: https://github.com/DReichLab/EIG/tree/master/CONVERTF

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

verify the mapping above
sex_int <- 0:2
sex_char <- c('U', 'M', 'F') # expected values
stopifnot(

all(
sex_to_char(sex_int) == sex_char

)
)

https://github.com/DReichLab/EIG/tree/master/CONVERTF
https://www.cog-genomics.org/plink/1.9/formats#fam

sex_to_int 31

sex_to_int Convert character sex codes to integer codes

Description

This function accepts the character sex codes accepted by Eigenstrat and turns them into the integer
codes accepted by Plink. Matching is case insensitive. Cases outside the table below are mapped to
0 (unknown) with a warning. The correspondence is:

• U: 0 (unknown)

• M: 1 (male)

• F: 2 (female)

Usage

sex_to_int(sex)

Arguments

sex Character vector of sex codes

Value

The converted numeric vector of sex codes

See Also

sex_to_char()

Eigenstrat IND format reference: https://github.com/DReichLab/EIG/tree/master/CONVERTF

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

verify the mapping above
sex_char <- c('U', 'm', 'f') # mixed case works!
sex_int <- 0:2 # expected values
stopifnot(

all(
sex_to_int(sex_char) == sex_int

)
)

https://github.com/DReichLab/EIG/tree/master/CONVERTF
https://www.cog-genomics.org/plink/1.9/formats#fam

32 sim_and_write_plink

sim_and_write_plink Simulate and write genotypes to plink format on the fly

Description

To save memory, simulate small chunks of variants at the time and write them to file as you go. This
is a wrapper around write_plink() and readr::write_lines() (for ancestral allele frequencies,
optional) with append = TRUE that simplifies looping somewhat. The function always appends to
the output, so it can be called several times if convenient, for example to simulate separate chromo-
somes.

Usage

sim_and_write_plink(
sim_chunk,
m_loci,
fam,
file,
file_p_anc = NA,
n_data_cut = 10^6

)

Arguments

sim_chunk A function that generates a small number of loci at the time, to be called itera-
tively until the whole genome is complete. It should accept a single parameter,
the number of loci to simulate at one time, and returns a list with these named
elements:

• X: the simulated genotype matrix, with the desired number of loci and the
same individuals in every call. Required.

• bim: the simulated variant table for the loci that were just simulated. Re-
quired.

• p_anc: the vector of ancestral allele frequencies (required for simulating
traits with correctly specified heritabilities). Optional.

m_loci Total number of loci to simulate.
fam Sample table of simulation to write.
file Output file path, without extensions (each of .bed, .bim, .fam extensions will be

added automatically as needed).
file_p_anc Complete file path (with extensions) of vector of ancestral allele frequencies, if

sim_chunk generates them (optional). This file is created with readr::write_lines(),
so it is a plain text file with each line being the ancestral allele frequency of each
locus in order, and it may be compressed if this file has a .gz extension.

n_data_cut Number of cells (individuals times loci) to aim to simulate at the time. Actual
number may be smaller to ensure that the number of loci is an integer, except if
the number of individuals is greater than n_data_cut then a single locus will be
simulated at the time (and the number of cells will be greater than n_data_cut).

symlink 33

See Also

write_plink()

Examples

some global constants that will be accessed by simulator function
n <- 10
and a global variable updated as we go
m_last <- 0

define a trivial but complete genotype simulator function
my_sim_chunk <- function(m_chunk) {

construct ancestral allele frequencies
p_anc <- runif(m_chunk)
simulate genotypes from HWE
X <- matrix(rbinom(m_chunk * n, 2, p_anc), m_chunk, n)
construct a trivial BIM table
bim <- make_bim(n = m_chunk)
but make sure count continues across chunks without repeats
(so IDs and positions don't clash!)
bim$id <- m_last + (1 : m_chunk)
update global value (use <<-) for next round
m_last <<- m_last + m_chunk
return all of these elements in a named list!
return(list(X = X, bim = bim, p_anc = p_anc))

}

the fam table is created fully now
fam <- make_fam(n = n)
set other parameters
m_loci <- 100

this is only necessary for example files to be in a *temporary* location
(don't use `tempfile` in real cases)
plink files path without extension
file <- tempfile('test')
p_anc file should have extension
filep <- tempfile('test-p-anc.txt.gz')

simulate and write as we go!
sim_and_write_plink(my_sim_chunk, m_loci, fam, file, filep)

clean up: delete sample outputs
delete_files_plink(file)
file.remove(filep)

symlink Create a symbolic link to a file, adjusting paths automatically if needed

34 tidy_kinship

Description

This function creates a symbolic (soft) link to a file, in a solution that works for all major operating
systems, so a file can have two names without actually duplicating data. Although the two paths
can be specified directly, this function automatically handles a conversion for a common but trou-
blesome case when the link is not in the current directory, in which case the file must be relative to
the parent directory of the link, although it is more natural to specify the file relative to the current
directory.

Usage

symlink(file, link, adjust_path = TRUE, verbose = TRUE)

Arguments

file The file that will be linked. This function does not require this file to exist, but
the link will be broken in that case.

link The path to the link to the file. If this points to an existing file, or an existing
link, it will be overwritten.

adjust_path If TRUE (default), file is automatically adjusted in the special case in which it
is a relative path (assumed to be relative to current directory) but link is not in
the current directory, in which case file is adjusted to be relative to the parent
directory of link. If file is an absolute path, it is never edited, and likewise no
editing is needed if link is in the current directory. Set to FALSE to avoid editing
in all cases.

verbose If TRUE (default), function reports the link and the final file it points to.

Examples

in this example, for the existing file, use this file provided by the package.
Note that it is an absolute path, so it will not be edited.
file <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)
this is the path to the link
link <- tempfile('delete-me-example', fileext = '.bed')

create the symbolic link!
symlink(file, link)

delete example link when done
file.remove(link)

tidy_kinship Create a tidy version of a kinship matrix

Description

A square symmetric kinship matrix is transformed into a tibble, with a row per unique element in
the kinship matrix, and three columns: ID of row, ID of column, and the kinship value.

write_bed 35

Usage

tidy_kinship(kinship, sort = TRUE)

Arguments

kinship The n-by-n symmetric kinship matrix

sort If TRUE (default), rows are sorted ascending by kinship value. Otherwise, order
is moving along the upper triangle row-by-row

Value

A tibble with n * (n + 1) / 2 rows (the upper triangle, including the diagonal), and 3 columns with
names: id1, id2, kinship.

Examples

create a symmetric matrix
kinship <- matrix(

c(
0.5, 0.1, 0.0,
0.1, 0.5, 0.2,
0.0, 0.2, 0.6

),
nrow = 3

)
add names (best for tidy version)
colnames(kinship) <- paste0('pop', 1:3)
rownames(kinship) <- paste0('pop', 1:3)
this returns tidy version
kinship_tidy <- tidy_kinship(kinship)
test colnames
stopifnot(colnames(kinship_tidy) == c('id1', 'id2', 'kinship'))
test row number
stopifnot(nrow(kinship_tidy) == 6)
inspect it
kinship_tidy

write_bed Write a genotype matrix into Plink BED format

Description

This function accepts a standard R matrix containing genotypes (values in c(0, 1, 2, NA)) and
writes it into a Plink-formatted BED (binary) file. Each genotype per locus (m loci) and individual
(n total) counts the number of alternative alleles or NA for missing data. No *.fam or *.bim files are
created by this basic function.

36 write_bed

Usage

write_bed(file, X, verbose = TRUE, append = FALSE)

Arguments

file Output file path. .bed extension may be omitted (will be added automatically if
it is missing).

X The m-by-n genotype matrix. Row and column names, if present, are ignored.

verbose If TRUE (default), function reports the path of the file being written (after auto-
completing the extension).

append If TRUE, appends variants onto the file. (Default is FALSE).

Details

Genotypes with values outside of [0, 2] cause an error, in which case the partial output is deleted.
However, beware that decimals get truncated internally, so values that truncate to 0, 1, or 2 will not
raise errors. The BED format does not accept fractional dosages, so such data will not be written as
expected.

Value

Nothing

See Also

write_plink() for writing a set of BED/BIM/FAM files.

Plink BED format reference: https://www.cog-genomics.org/plink/1.9/formats#bed

Examples

to write an existing matrix `X` into file "data.bed", run like this:
write_bed("data", X)
this also works
write_bed("data.bed", X)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

file_out <- tempfile('delete-me-example', fileext = '.bed') # will also work without extension
create 10 random genotypes
X <- rbinom(10, 2, 0.5)
replace 3 random genotypes with missing values
X[sample(10, 3)] <- NA
turn into 5x2 matrix
X <- matrix(X, nrow = 5, ncol = 2)
write this data to file in BED format
(only *.bed gets created, no *.fam or *.bim in this call)
write_bed(file_out, X)
delete output when done

https://www.cog-genomics.org/plink/1.9/formats#bed

write_bim 37

file.remove(file_out)

write_bim Write Plink *.bim files

Description

This function writes a tibble with the right columns into a standard Plink *.bim file. It uses
readr::write_tsv() to do it efficiently.

Usage

write_bim(file, tib, verbose = TRUE, append = FALSE)

Arguments

file Output file (whatever is accepted by readr::write_tsv()). If file is missing
the expected *.bim extension, the function adds it.

tib The tibble or data.frame to write. It must contain these columns: chr, id, posg,
pos, alt, ref. Throws an error if any of these columns are missing. Additional
columns are ignored. Columns are automatically reordered in output as expected
in format.

verbose If TRUE (default), function reports the path of the file being written (after auto-
completing the extension).

append If TRUE, appends rows onto the file. (Default is FALSE).

Value

The output tib invisibly (what readr::write_tsv() returns).

See Also

write_plink() for writing a set of BED/BIM/FAM files.

Plink BIM format references: https://www.cog-genomics.org/plink/1.9/formats#bim https:
//www.cog-genomics.org/plink/2.0/formats#bim

Examples

to write an existing table `bim` into file "data.bim", run like this:
write_bim("data", bim)
this also works
write_bim("data.bim", bim)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

https://www.cog-genomics.org/plink/1.9/formats#bim
https://www.cog-genomics.org/plink/2.0/formats#bim
https://www.cog-genomics.org/plink/2.0/formats#bim

38 write_eigenvec

create a dummy tibble with the right columns
library(tibble)
tib <- tibble(

chr = 1:3,
id = 1:3,
posg = 0,
pos = 1:3,
alt = 'B',
ref = 'A'

)
a dummy file
file_out <- tempfile('delete-me-example', fileext = '.bim') # will also work without extension
write the table out in *.bim format (no header, columns in right order)
write_bim(file_out, tib)

example cleanup
file.remove(file_out)

write_eigenvec Write eigenvectors table into a Plink-format file

Description

This function writes eigenvectors in Plink 1 (same as GCTA) format (table with no header, with first
two columns being fam and id), which is a subset of Plink 2 format (which optionally allows column
names and does not require fam column). Main expected case is eigenvec passed as a numeric
matrix and fam provided to complete first two missing columns. However, input eigenvec may
also be a data.frame already containing the fam and id columns, and other reasonable intermediate
cases are also handled. If both eigenvec and fam are provided and contain overlapping columns,
those in eigenvec get overwritten with a warning.

Usage

write_eigenvec(
file,
eigenvec,
fam = NULL,
ext = "eigenvec",
plink2 = FALSE,
verbose = TRUE

)

Arguments

file The output file name (possibly without extension)

eigenvec A matrix or tibble containing the eigenvectors to include in the file. Column
names other than fam and id can be anything and are all treated as eigenvectors
(not written to file).

write_eigenvec 39

fam An optional fam table, which is used to add the fam and id columns to eigenvec
(which overwrite columns of the same name in eigenvec if present, after a
warning is produced). Individuals in fam and eigenvec are assumed to be the
same and in the same order.

ext Output file extension. Since the general "covariates" file format in GCTA and
Plink are the same as this, this function may be used to write more general
covariates files if desired, in which case users may wish to change this extension
for clarity.

plink2 If TRUE, prints a header in the style of plink2 (starts with hash, fam -> FID, id
-> IID, and the default PCs are named PC1, PC2, etc. Returned data.frame will
also have these names.

verbose If TRUE (default), function reports the path of the file being written (after auto-
completing the extension).

Value

Invisibly, the final eigenvec data.frame or tibble written to file, starting with columns fam and id
(merged from the fam input, if it was passed) followed by the rest of columns in the input eigenvec.
Column names are instead #FID, IID, etc if plink2 = TRUE.

See Also

read_eigenvec() for reading an eigenvec file.

Plink 1 eigenvec format reference: https://www.cog-genomics.org/plink/1.9/formats#eigenvec

Plink 2 eigenvec format reference: https://www.cog-genomics.org/plink/2.0/formats#eigenvec

GCTA eigenvec format reference: https://cnsgenomics.com/software/gcta/#PCA

Examples

to write an existing matrix `eigenvec` and optional `fam` tibble into file "data.eigenvec",
run like this:
write_eigenvec("data", eigenvec, fam = fam)
this also works
write_eigenvec("data.eigenvec", eigenvec, fam = fam)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

create dummy eigenvectors matrix, in this case from a small identity matrix
number of individuals
n <- 10
eigenvec <- eigen(diag(n))$vectors
subset columns to use top 3 eigenvectors only
eigenvec <- eigenvec[, 1:3]
dummy fam data
library(tibble)
fam <- tibble(fam = 1:n, id = 1:n)

write this data to .eigenvec file

https://www.cog-genomics.org/plink/1.9/formats#eigenvec
https://www.cog-genomics.org/plink/2.0/formats#eigenvec
https://cnsgenomics.com/software/gcta/#PCA

40 write_fam

output path without extension
file <- tempfile('delete-me-example')
eigenvec_final <- write_eigenvec(file, eigenvec, fam = fam)
inspect the tibble that was written to file (returned invisibly)
eigenvec_final

remove temporary file (add extension before deletion)
file.remove(paste0(file, '.eigenvec'))

write_fam Write Plink *.fam files

Description

This function writes a tibble with the right columns into a standard Plink *.fam file. It uses
readr::write_tsv() to do it efficiently.

Usage

write_fam(file, tib, verbose = TRUE)

Arguments

file Output file (whatever is accepted by readr::write_tsv()). If file is missing
the expected *.fam extension, the function adds it.

tib The tibble or data.frame to write. It must contain these columns: fam, id, pat,
mat, sex, pheno. Throws an error if any of these columns are missing. Addi-
tional columns are ignored. Columns are automatically reordered in output as
expected in format.

verbose If TRUE (default), function reports the path of the file being written (after auto-
completing the extension).

Value

The output tib invisibly (what readr::write_tsv() returns).

See Also

write_plink() for writing a set of BED/BIM/FAM files.

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

https://www.cog-genomics.org/plink/1.9/formats#fam

write_grm 41

Examples

to write an existing table `fam` into file "data.fam", run like this:
write_fam("data", fam)
this also works
write_fam("data.fam", fam)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

create a dummy tibble with the right columns
library(tibble)
tib <- tibble(

fam = 1:3,
id = 1:3,
pat = 0,
mat = 0,
sex = 1,
pheno = 1

)
a dummy file
file_out <- tempfile('delete-me-example', fileext = '.fam') # will also work without extension
write the table out in *.fam format (no header, columns in right order)
write_fam(file_out, tib)
delete output when done
file.remove(file_out)

write_grm Write GCTA GRM and related plink2 binary files

Description

This function writes a GCTA Genetic Relatedness Matrix (GRM, i.e. kinship) set of files in their
binary format, given a kinship matrix and, if available, the corresponding matrix of pair sample
sizes (non-trivial under missingness) and individuals table. Setting some options allows writing
plink2 binary kinship formats such as "king" (follow examples in read_grm()).

Usage

write_grm(
name,
kinship,
M = NULL,
fam = NULL,
verbose = TRUE,
ext = "grm",
shape = c("triangle", "strict_triangle", "square"),
size_bytes = 4

)

42 write_grm

Arguments

name The base name of the output files. Files with that base, plus shared extension
(default "grm", see ext below), plus extensions .bin, .N.bin, and .id may be
created depending on the data provided.

kinship The symmetric n-times-n kinship matrix to write into file with extension .<ext>.bin.

M The optional symmetric n-times-n matrix of pair sample sizes to write into file
with extension .<ext>.N.bin.

fam The optional data.frame or tibble with individual annotations (columns with
names fam and id, subset of columns of Plink FAM) to write into file with
extension .<ext>.id. If fam is NULL but kinship has non-NULL column or row
names, these are used as the second (id) value in the output table (the first (fam)
column is set to the missing value in this case).

verbose If TRUE (default), function reports the path of the files being written.

ext Shared extension for all three outputs (see name above; default "grm"). Another
useful value is "king", to match the KING-robust format produced by plink2. If
NA, no extension is added. If given ext is also present at the end of name, then it
is not added again.

shape The shape of the information to write (may be abbreviated). Default "triangle"
assumes there are n*(n+1)/2 values to write corresponding to the upper trian-
gle including the diagonal (required for GCTA GRM). "strict_triangle" assumes
there are n*(n-1)/2 values to write corresponding to the upper triangle exclud-
ing the diagonal (best for plink2 KING-robust). Lastly, "square" assumes there
are n*n values to write corresponding to the entire square matrix, ignoring sym-
metry.

size_bytes The number of bytes per number encoded. Default 4 corresponds to GCTA
GRM and plink2 "bin4", whereas plink2 "bin" requires a value of 8.

See Also

read_grm()

Examples

to write existing data `kinship`, `M`, and `fam` into files "data.grm.bin" etc, run like this:
write_grm("data", kinship, M = M, fam = fam)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

create dummy data to write
kinship for 3 individuals
kinship <- matrix(

c(
0.6, 0.2, 0.0,
0.2, 0.5, 0.1,
0.0, 0.1, 0.5

),

write_ind 43

nrow = 3
)
pair sample sizes matrix
M <- matrix(

c(
10, 9, 8,
9, 9, 7,
8, 7, 8

),
nrow = 3

)
individual annotations table
library(tibble)
fam <- tibble(

fam = 1:3,
id = 1:3

)
dummy files to write and delete
name <- tempfile('delete-me-example') # no extension
write the data now!
write_grm(name, kinship, M = M, fam = fam)
delete outputs when done
delete_files_grm(name)

write_ind Write Eigenstrat *.ind files

Description

This function writes a tibble with the right columns into a standard Eigenstrat *.ind file. It uses
readr::write_tsv() to do it efficiently.

Usage

write_ind(file, tib, verbose = TRUE)

Arguments

file Output file (whatever is accepted by readr::write_tsv()). If file is missing
the expected *.ind extension, the function adds it.

tib The tibble or data.frame to write. It must contain these columns: id, sex, label.
Throws an error if any of these columns are missing. Additional columns are
ignored. Columns are automatically reordered in output as expected in format.

verbose If TRUE (default), function reports the path of the file being written (after auto-
completing the extension).

Value

The output tib invisibly (what readr::write_tsv() returns).

44 write_matrix

See Also

Eigenstrat IND format reference: https://github.com/DReichLab/EIG/tree/master/CONVERTF

Examples

to write an existing table `ind` into file "data.ind", run like this:
write_ind("data", ind)
this also works
write_ind("data.ind", ind)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

create a dummy tibble with the right columns
library(tibble)
tib <- tibble(

id = 1:3,
sex = 1,
label = 1

)
a dummy file
file_out <- tempfile('delete-me-example', fileext = '.ind') # will also work without extension
write the table out in *.ind format (no header, columns in right order)
write_ind(file_out, tib)
delete output when done
file.remove(file_out)

write_matrix Write a matrix to a file without row or column names

Description

The inverse function of read_matrix(), this writes what is intended to be a numeric matrix to
a tab-delimited file without row or column names present. It uses readr::write_tsv() to do it
efficiently. Intended for outputs such as those of admixture inference approaches.

Usage

write_matrix(file, x, ext = "txt", verbose = TRUE, append = FALSE)

Arguments

file Output file (whatever is accepted by readr::write_tsv()). If file is missing
the expected extension (see below), the function adds it.

x The matrix to write. Unlike read_matrix(), this is not in fact required to be
a matrix or be strictly numeric; anything that coerces to tibble or data.frame is
acceptable.

https://github.com/DReichLab/EIG/tree/master/CONVERTF

write_phen 45

ext The desired file extension. If NA, no extension is added. Works if file already
contains desired extension.

verbose If TRUE (default), function reports the path of the file being written (after auto-
completing the extension).

append If TRUE, appends rows onto the file. (Default is FALSE).

Value

The output x, coerced into data.frame, invisibly (what readr::write_tsv() returns).

See Also

read_matrix(), the inverse function.

Examples

to write an existing matrix `x` into file "data.txt", run like this:
write_matrix("data", x)
this also works
write_matrix("data.txt", x)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

create a dummy matrix with the right columns
x <- rbind(1:3, (0:2)/10, -1:1)
a dummy file
file_out <- tempfile('delete-me-example', fileext = '.txt') # will also work without extension
write the matrix without header
write_matrix(file_out, x)
delete output when done
file.remove(file_out)

write_phen Write *.phen files

Description

This function writes a tibble with the right columns into a standard *.phen file. It uses readr::write_tsv()
to do it efficiently. GCTA and EMMAX use this format.

Usage

write_phen(file, tib, verbose = TRUE)

46 write_plink

Arguments

file Output file (whatever is accepted by readr::write_tsv()). If file is missing
the expected *.phen extension, the function adds it.

tib The tibble or data.frame to write. It must contain these columns: fam, id, pheno.
Throws an error if any of these columns are missing. Additional columns are
ignored. Columns are automatically reordered in output as expected in format.

verbose If TRUE (default), function reports the path of the file being written (after auto-
completing the extension).

Value

The output tib invisibly (what readr::write_tsv() returns).

See Also

GCTA PHEN format reference: https://cnsgenomics.com/software/gcta/#GREMLanalysis

Examples

to write an existing table `phen` into file "data.phen", run like this:
write_phen("data", phen)
this also works
write_phen("data.phen", phen)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

create a dummy tibble with the right columns
library(tibble)
tib <- tibble(

fam = 1:3,
id = 1:3,
pheno = 1

)
a dummy file
file_out <- tempfile('delete-me-example', fileext = '.phen') # will also work without extension
write the table out in *.phen format (no header, columns in right order)
write_phen(file_out, tib)
delete output when done
file.remove(file_out)

write_plink Write genotype and sample data into a Plink BED/BIM/FAM file set.

https://cnsgenomics.com/software/gcta/#GREMLanalysis

write_plink 47

Description

This function writes a genotype matrix (X) and its associated locus (bim) and individual (fam) data
tables into three Plink files in BED, BIM, and FAM formats, respectively. This function is a wrapper
around the more basic functions write_bed(), write_bim(), write_fam(), but additionally tests
that the data dimensions agree (or stops with an error). Also checks that the genotype row and
column names agree with the bim and fam tables if they are all present. In addition, if bim =
NULL or fam = NULL, these are auto-generated using make_bim() and make_fam(), which is useful
behavior for simulated data. Lastly, the phenotype can be provided as a separate argument and
incorporated automatically if fam = NULL (a common scenario for simulated genotypes and traits).
Below suppose there are m loci and n individuals.

Usage

write_plink(
file,
X,
bim = NULL,
fam = NULL,
pheno = NULL,
verbose = TRUE,
append = FALSE,
write_phen = FALSE

)

Arguments

file Output file path, without extensions (each of .bed, .bim, .fam extensions will be
added automatically as needed).

X The m-by-n genotype matrix.

bim The tibble or data.frame containing locus information. It must contain m rows
and these columns: chr, id, posg, pos, ref, alt. If NULL (default), it will be
quietly auto-generated.

fam The tibble or data.frame containing individual information. It must contain n
rows and these columns: fam, id, pat, mat, sex, pheno. If NULL (default), it
will be quietly auto-generated.

pheno The phenotype to write into the FAM file assuming fam = NULL. This must be a
length-n vector. This will be ignored (with a warning) if fam is provided.

verbose If TRUE (default) function reports the paths of the files being written (after auto-
completing the extensions).

append If TRUE, appends loci onto the BED and BIM files (default FALSE). In this mode,
all individuals must be present in each write (only loci are appended); the FAM
file is not overwritten if present, but is required at every write for internal vali-
dations. If the FAM file already exists, it is not checked to agree with the FAM
table provided. PHEN file is always unchanged and ignored if append = TRUE.

write_phen If TRUE and append = FALSE, writes a .phen file too from the fam data provided
or auto-generated (using write_phen()). Default FALSE.

48 write_snp

Value

Invisibly, a named list with items in this order: X (genotype matrix), bim (tibble), fam (tibble). This
is most useful when either BIM or FAM tables were auto-generated.

See Also

write_bed(), write_bim(), write_fam(), make_bim(), make_fam().

Plink BED/BIM/FAM format reference: https://www.cog-genomics.org/plink/1.9/formats

Examples

to write existing data `X`, `bim`, `fam` into files "data.bed", "data.bim", and "data.fam",
run like this:
write_plink("data", X, bim = bim, fam = fam)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

here is an example for a simulation

create 10 random genotypes
X <- rbinom(10, 2, 0.5)
replace 3 random genotypes with missing values
X[sample(10, 3)] <- NA
turn into 5x2 matrix
X <- matrix(X, nrow = 5, ncol = 2)

simulate a trait for two individuals
pheno <- rnorm(2)

write this data to BED/BIM/FAM files
output path without extension
file_out <- tempfile('delete-me-example')
here all of the BIM and FAM columns except `pheno` are autogenerated
write_plink(file_out, X, pheno = pheno)

delete all three outputs when done
delete_files_plink(file_out)

write_snp Write Eigenstrat *.snp files

Description

This function writes a tibble with the right columns into a standard Eigenstrat *.snp file. It uses
readr::write_tsv() to do it efficiently.

https://www.cog-genomics.org/plink/1.9/formats

write_snp 49

Usage

write_snp(file, tib, verbose = TRUE)

Arguments

file Output file (whatever is accepted by readr::write_tsv()). If file is missing
the expected *.snp extension, the function adds it.

tib The tibble or data.frame to write. It must contain these columns: id, chr, posg,
pos, ref, alt. Throws an error if any of these columns are missing. Additional
columns are ignored. Columns are automatically reordered in output as expected
in format.

verbose If TRUE (default), function reports the path of the file being written (after auto-
completing the extension).

Value

The output tib invisibly (what readr::write_tsv() returns).

See Also

Eigenstrat SNP format reference: https://github.com/DReichLab/EIG/tree/master/CONVERTF

Examples

to write an existing table `snp` into file "data.snp", run like this:
write_snp("data", snp)
this also works
write_snp("data.snp", snp)

The following example is more detailed but also more awkward
because (only for these examples) the package must create the file in a *temporary* location

create a dummy tibble with the right columns
library(tibble)
tib <- tibble(

id = 1:3,
chr = 1:3,
posg = 0,
pos = 1:3,
ref = 'A',
alt = 'B'

)
a dummy file
file_out <- tempfile('delete-me-example', fileext = '.snp') # will also work without extension
write the table out in *.snp format (no header, columns in right order)
write_snp(file_out, tib)
delete output when done
file.remove(file_out)

https://github.com/DReichLab/EIG/tree/master/CONVERTF

Index

count_lines, 2

delete_files_grm, 3
delete_files_phen, 4
delete_files_plink, 5

genio, 6
genio-package (genio), 6
geno_to_char, 7
geno_to_char(), 14, 25

het_reencode_bed, 8

ind_to_fam, 9

make_bim, 10
make_bim(), 47, 48
make_fam, 12
make_fam(), 47, 48

read_bed, 13
read_bed(), 8, 9, 25
read_bim, 15
read_bim(), 8, 25
read_eigenvec, 16
read_eigenvec(), 39
read_fam, 18
read_fam(), 25
read_grm, 19
read_grm(), 41, 42
read_ind, 21
read_matrix, 22
read_matrix(), 44, 45
read_phen, 23
read_plink, 25
read_plink(), 7, 8, 14, 15, 18
read_snp, 26
readr::read_table(), 15, 16, 18, 21–24, 26
readr::write_lines(), 32
readr::write_tsv(), 37, 40, 43–46, 48, 49
require_files_grm, 27

require_files_phen, 28
require_files_plink, 29

sex_to_char, 30
sex_to_char(), 31
sex_to_int, 31
sex_to_int(), 10, 30
sim_and_write_plink, 32
symlink, 33
symlink(), 9

tidy_kinship, 34

write_bed, 35
write_bed(), 9, 47, 48
write_bim, 37
write_bim(), 47, 48
write_eigenvec, 38
write_eigenvec(), 17
write_fam, 40
write_fam(), 47, 48
write_grm, 41
write_grm(), 20
write_ind, 43
write_matrix, 44
write_matrix(), 23
write_phen, 45
write_phen(), 47
write_plink, 46
write_plink(), 32, 33, 36, 37, 40
write_snp, 48

50

	count_lines
	delete_files_grm
	delete_files_phen
	delete_files_plink
	genio
	geno_to_char
	het_reencode_bed
	ind_to_fam
	make_bim
	make_fam
	read_bed
	read_bim
	read_eigenvec
	read_fam
	read_grm
	read_ind
	read_matrix
	read_phen
	read_plink
	read_snp
	require_files_grm
	require_files_phen
	require_files_plink
	sex_to_char
	sex_to_int
	sim_and_write_plink
	symlink
	tidy_kinship
	write_bed
	write_bim
	write_eigenvec
	write_fam
	write_grm
	write_ind
	write_matrix
	write_phen
	write_plink
	write_snp
	Index

