
Package: simfam (via r-universe)
October 30, 2024

Title Simulate and Model Family Pedigrees with Structured Founders

Version 1.1.11.9000

Description The focus is on simulating and modeling families with
founders drawn from a structured population (for example, with
different ancestries or other potentially non-family
relatedness), in contrast to traditional pedigree analysis that
treats all founders as equally unrelated. Main function
simulates a random pedigree for many generations, avoiding
close relatives, pairing closest individuals according to a 1D
geography and their randomly-drawn sex, and with variable
children sizes to result in a target population size per
generation. Auxiliary functions calculate kinship matrices,
admixture matrices, and draw random genotypes across arbitrary
pedigree structures starting from the corresponding founder
values. The code is built around the plink FAM table format
for pedigrees. There are functions that simulate independent
loci and also functions that use an explicit recombination
model to simulate linkage disequilibrium (LD) in the pedigree,
as well as population analogs resembling the Li-Stephens model.
Described in Yao and Ochoa (2023) <doi:10.7554/eLife.79238>.

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Imports Rcpp, stats, tibble, dplyr, tidyselect, rlang, Matrix, methods

Suggests testthat (>= 3.0.0), popkin, bnpsd (>= 1.3.2), genio,
BEDMatrix, kinship2, RColorBrewer, knitr, rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr

LinkingTo Rcpp

URL https://github.com/OchoaLab/simfam

BugReports https://github.com/OchoaLab/simfam/issues

1

https://doi.org/10.7554/eLife.79238
https://github.com/OchoaLab/simfam
https://github.com/OchoaLab/simfam/issues

2 admix_fam

Depends R (>= 2.10)

LazyData true

Repository https://ochoalab.r-universe.dev

RemoteUrl https://github.com/ochoalab/simfam

RemoteRef HEAD

RemoteSha a59451c1fafafa4e99d2ae7ac48c01d3ecaf7b23

Contents
admix_fam . 2
admix_last_gen . 4
bim_add_posg . 5
draw_sex . 7
fam_ancestors . 7
geno_fam . 8
geno_last_gen . 10
geno_last_gen_admix_recomb . 11
kinship_fam . 14
kinship_last_gen . 16
pop_recomb . 17
prune_fam . 19
recomb_admix_inds . 20
recomb_fam . 22
recomb_founder_blocks_inherited . 24
recomb_geno_inds . 25
recomb_haplo_inds . 27
recomb_init_founders . 28
recomb_last_gen . 30
recomb_map_fix_ends_chr . 31
recomb_map_hg . 32
recomb_map_inds . 33
recomb_map_simplify_chr . 34
sim_pedigree . 36
tidy_recomb_map_inds . 38

Index 40

admix_fam Calculate admixture matrix of a pedigree with known admixture of
founders

Description

Calculates a full admixture proportions matrix (for all individuals in the provided pedigree FAM
table) starting from the admixture proportions of the founders as provided.

admix_fam 3

Usage

admix_fam(admix, fam, missing_vals = c("", 0))

Arguments

admix The admixture proportions matrix of the founders (individuals along rows and
ancestries along columns). This matrix must have row names that identify each
founder (matching codes in fam$id). Individuals may be in a different order
than fam$id. Extra individuals in admix but absent in fam$id will be silently
ignored. All values should be non-negative and each row of admix should sum
to one; for speed, this code does not check that admix is valid, just averages data
as-is.

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The admixture proportions matrix of the entire fam table, based on the admixture of the founders.
These are expectations, calculated for each individual as the average ancestry proportion of the
parents. The rows of this admixture matrix correspond to fam$id in that order. The columns
(ancestries) are the same as in the input admix.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

The smallest pedigree, two parents and a child.
A minimal fam table with the three required columns.
Note "mother" and "father" have missing parent IDs, while "child" does not
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')

)

admixture proportions of the parents
admix <- rbind(c(0.3, 0.3, 0.4), c(0.5, 0.25, 0.25))
Name the parents with same codes as in `fam`
(order can be different)
rownames(admix) <- c('mother', 'father')
name ancestries too

https://www.cog-genomics.org/plink/1.9/formats#fam

4 admix_last_gen

colnames(admix) <- c('African', 'European', 'Asian')

Calculate the full admixture proportions matrix
admix_all <- admix_fam(admix, fam)

This is a 3x3 matrix with row names matching fam$id.
The parent submatrix equals the input (reordered),
but now there's admixture to the child too (averages of parents)
admix_all

admix_last_gen Calculate admixture matrix for last generation of a pedigree with ad-
mixture of founders

Description

A wrapper around the more general admix_fam(), specialized to save memory when only the last
generation is desired (admix_fam() returns admixture for the entire pedigree in a single matrix).
This function assumes that generations are non-overlapping (met by the output of sim_pedigree()),
in which case each generation g can be drawn from generation g-1 data only. That way, only two
consecutive generations need be in memory at any given time. The partitioning of individuals into
generations is given by the ids parameter (again matches the output of sim_pedigree()).

Usage

admix_last_gen(admix, fam, ids, missing_vals = c("", 0))

Arguments

admix The admixture proportions matrix of the founders (individuals along rows and
ancestries along columns). This matrix must have row names that identify each
founder (matching codes in fam$id). Individuals may be in a different order
than fam$id. Extra individuals in admix but absent in fam$id will be silently
ignored. All values should be non-negative and each row of admix should sum
to one; for speed, this code does not check that admix is valid, just averages data
as-is.

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

ids A list containing vectors of IDs for each generation. All these IDs must be
present in fam$id. If IDs in fam and ids do not fully agree, the code processes
the IDs in the intersection, which is helpful when fam is pruned but ids is the
original (larger) set.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

bim_add_posg 5

Value

The admixture proportions matrix of the last generation (the intersection of ids[length(ids)]
and fam$id). The rows of this matrix are last-generation individuals in the order that they appear in
fam$id.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

A small pedigree, two parents and two children.
A minimal fam table with the three required columns.
Note "mother" and "father" have missing parent IDs, while children do not
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child', 'sib'),
pat = c(NA, NA, 'father', 'father'),
mat = c(NA, NA, 'mother', 'mother')

)
need an `ids` list separating the generations
ids <- list(c('father', 'mother'), c('child', 'sib'))

admixture proportions of the parents
admix <- rbind(c(0.3, 0.3, 0.4), c(0.5, 0.25, 0.25))
Name the parents with same codes as in `fam`
(order can be different)
rownames(admix) <- c('mother', 'father')
name ancestries too
colnames(admix) <- c('African', 'European', 'Asian')

calculate the admixture matrix of the children
admix2 <- admix_last_gen(admix, fam, ids)
admix2

bim_add_posg Calculate genetic positions from base pair positions and a genetic map

Description

Given a table of base pair positions (a data frame with chromosome and position values), and a
genetic map (see recomb_map_hg), this function calculates genetic positions. If genetic positions
existed in input, they are overwritten.

Usage

bim_add_posg(bim, map)

https://www.cog-genomics.org/plink/1.9/formats#fam

6 bim_add_posg

Arguments

bim The table of variants, which is a data.frame/tibble with at least two columns:
chr (must be numeric between 1 and the maximum chromosome in map below
for map to work, otherwise ignored with a warning) and pos (base pair position,
usually an integer). If column posg is present, it will be overwritten in the
output, otherwise it is created. Additional columns may be present and will be
unedited.

map The genetic map, a list of chromosomes each of which is a data.frame/tibble
with columns pos for base pair position and posg for genetic position.

Details

Base pair positions are converted to genetic positions from the provided map using linear interpo-
lation, using stats::approx() with options rule = 2 (out of range cases are set to nearest end’s
value) and ties = list('ordered', mean) (assume data is ordered, interpolate ties in base pair
positions in map using mean of genetic positions). Output will be incorrect, without throwing errors,
if genetic map is not ordered.

Value

The bim input with new or overwritten column posg of genetic positions in cM. Rows with values
of chr that are not numeric or are out of range (for given map) are unedited if the posg column was
present, or assigned NA otherwise.

See Also

recomb_map_hg for simplified human recombination maps included in this package.

Examples

let's define a very simple table of base pair positions, with minimal information
library(tibble)
bim <- tibble(

chr = c(1, 1, 2, 2),
pos = c(50, 200, 30, 123) * 1000000

)
use latest human recombination map
map <- recomb_map_hg38

now use this function to add genetic positions column to `bim`!
bim <- bim_add_posg(bim, map)

draw_sex 7

draw_sex Draw sex values randomly for a list of individuals

Description

Each individual has their sex drawn between male and female with equal probability. Sex is encoded
numerically following the convention for plink FAM files (see below).

Usage

draw_sex(n)

Arguments

n The number of individuals.

Value

The length-n vector of integer sex assignments: 1L corresponds to male, 2L to female.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

draw_sex(10)

fam_ancestors Construct an ancestors-only pedigree for one person G-generations
deep

Description

Creates an idealized pedigree listing all ancestors of one individual starting from G generations ago,
without inbreeding (a binary tree). IDs are automatically generated strings indicating generation
and individual number within generation. Useful for simple simulations of individuals with explicit
ancestors.

Usage

fam_ancestors(G)

https://www.cog-genomics.org/plink/1.9/formats#fam

8 geno_fam

Arguments

G The desired number of generations. G=1 returns a trivial pedigree with a single
individual; G=2 an individual and its two parents; G=3 an individual, its parents
and grandparents, etc.

Value

A list with two named elements:

• fam: a tibble describing the pedigree, with the following columns

– id: The ID of each individual, a string in the format "g-i" joining with a dash the gen-
eration number ("g", numbered backward in time) and the individual number within the
generation ("i").

– pat: The paternal ID. For individual "g-i" parent is (g+1)"-"(2*i-1), except for last gen-
eration it is NA (their parents are missing).

– mat: The maternal ID. For individual "g-i" parent is (g+1)"-"(2*i), except for last gener-
ation it is NA (their parents are missing).

– sex: 1 (male) for all odd-numbered individuals, 2 (female) for even-numbered individu-
als, consistent with pedigree structure. Side-effect is first-generation individual ("1-1") is
always male (edit afterwards as desired).

• ids: A list containing vectors of IDs separated by generation, but here starting from the last
generation (highest "g"), to be consistent with output of sim_pedigree() and the expected
input of all *_last_gen functions.

See Also

sim_pedigree() to simulate a random pedigree with a given number of generations, generation
sizes, and other parameters.

Examples

construct the 8-generation ancestor tree of one individual:
data <- fam_ancestors(8)
this is the pedigree
fam <- data$fam
and this is the handy list of IDs by discrete generation,
used by `*_last_gen` functions to reduce memory usage
ids <- data$ids

geno_fam Draw random genotypes on a pedigree with known founder genotypes

Description

Constructs a random genotype matrix (for all individuals in the provided pedigree FAM table)
starting from the genotype matrix of the founders as provided.

geno_fam 9

Usage

geno_fam(X, fam, missing_vals = c("", 0))

Arguments

X The genotype matrix of the founders (loci along rows, individuals along columns).
This matrix must have column names that identify each founder (matching codes
in fam$id). Individuals may be in a different order than fam$id. Extra individ-
uals in admix but absent in fam$id will be silently ignored. All values should
be in c(0L, 1L, 2L); for speed, this code does not check that X is valid (i.e.
fractional values between 0 and 2 may not cause errors).

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The random genotype matrix of the entire fam table, starting from the genotypes of the founders.
The columns of this matrix correspond to fam$id in that order. The rows (loci) are the same as in
the input X.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

The smallest pedigree, two parents and a child.
A minimal fam table with the three required columns.
Note "mother" and "father" have missing parent IDs, while "child" does not
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')

)

genotypes of the parents at 4 loci
X <- cbind(c(1, 2, 0, 2), c(0, 2, 2, 1))
Name the parents with same codes as in `fam`
(order can be different)
colnames(X) <- c('mother', 'father')
name loci too
rownames(X) <- paste0('rs', 1:4)

https://www.cog-genomics.org/plink/1.9/formats#fam

10 geno_last_gen

Draw the full genotype matrix
X_all <- geno_fam(X, fam)

This is a 4x3 matrix with column names matching fam$id.
The parent submatrix equals the input (reordered),
but now there's random genotypes for the child too
X_all

geno_last_gen Draw random genotypes for last generation of a pedigree with known
founder genotypes

Description

A wrapper around the more general geno_fam(), specialized to save memory when only the last
generation is desired (geno_fam() returns genotypes for the entire pedigree in a single matrix). This
function assumes that generations are non-overlapping (met by the output of sim_pedigree()), in
which case each generation g can be drawn from generation g-1 data only. That way, only two
consecutive generations need be in memory at any given time. The partitioning of individuals into
generations is given by the ids parameter (again matches the output of sim_pedigree()).

Usage

geno_last_gen(X, fam, ids, missing_vals = c("", 0))

Arguments

X The genotype matrix of the founders (loci along rows, individuals along columns).
This matrix must have column names that identify each founder (matching codes
in fam$id). Individuals may be in a different order than fam$id. Extra individ-
uals in admix but absent in fam$id will be silently ignored. All values should
be in c(0L, 1L, 2L); for speed, this code does not check that X is valid (i.e.
fractional values between 0 and 2 may not cause errors).

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

ids A list containing vectors of IDs for each generation. All these IDs must be
present in fam$id. If IDs in fam and ids do not fully agree, the code processes
the IDs in the intersection, which is helpful when fam is pruned but ids is the
original (larger) set.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

geno_last_gen_admix_recomb 11

Value

The random genotype matrix of the last generation (the intersection of ids[length(ids)] and
fam$id). The columns of this matrix are last-generation individuals in the order that they appear in
fam$id. The rows (loci) are the same as in the input X.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

A small pedigree, two parents and two children.
A minimal fam table with the three required columns.
Note "mother" and "father" have missing parent IDs, while children do not
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child', 'sib'),
pat = c(NA, NA, 'father', 'father'),
mat = c(NA, NA, 'mother', 'mother')

)
need an `ids` list separating the generations
ids <- list(c('father', 'mother'), c('child', 'sib'))

genotypes of the parents at 4 loci
X <- cbind(c(1, 2, 0, 2), c(0, 2, 2, 1))
Name the parents with same codes as in `fam`
(order can be different)
colnames(X) <- c('mother', 'father')
name loci too
rownames(X) <- paste0('rs', 1:4)

Draw the genotype matrix of the children
X2 <- geno_last_gen(X, fam, ids)
X2

geno_last_gen_admix_recomb

Simulate an admixed family efficiently with founders with LD

Description

This function in essence combines pop_recomb() to simulate founders of known ancestries with LD
(following a Li-Stephens-like model), draws recombination breaks of focal last-generation descen-
dants from the specified pedigree using recomb_last_gen(), and their genomes from the founders
variants using recomb_haplo_inds(). However, since a limited portion of founder sequences is ac-
tually inherited, the simulation is made much more efficient by simulating only those subsequences
that were inherited, which saves time, and utilizing sparse matrices, which saves memory too. See
below for a more detailed algorithm.

https://www.cog-genomics.org/plink/1.9/formats#fam

12 geno_last_gen_admix_recomb

Usage

geno_last_gen_admix_recomb(
anc_haps,
bim,
map,
G,
fam,
ids,
founders_anc,
loci_on_cols = FALSE,
missing_vals = c("", 0)

)

Arguments

anc_haps A named list that maps the code used for each ancestry to its haplotype matrix.
Each of the haplotype matrices the argument haps passed to pop_recomb(),
namely is a regular matrix or BEDMatrix object of haplotype values, one row per
locus, one column per haplotype (half individual), or transposed if loci_on_cols
= TRUE and for BEDMatrix objects. Here, these values must be numeric (recom-
mended are zeroes and ones, indicating absence or presence of reference allele).

bim The table of variants of haps, which is a data.frame/tibble with at least two
columns: chr (must be numeric between 1 and the maximum chromosome in
map below for map to work) and pos (base pair position, usually an integer).

map The genetic map, a list of chromosomes each of which is a data.frame/tibble
with columns pos for base pair position and posg for genetic position.

G Number of generations since most recent common ancestor of population (to
multiply standard recombination rate)

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

ids A list containing vectors of IDs for each generation. All these IDs must be
present in fam$id. If IDs in fam and ids do not fully agree, the code processes
the IDs in the intersection, which is helpful when fam is pruned but ids is the
original (larger) set.

founders_anc a named vector that maps every founder haplotype (the names of this vector) to
its ancestry code. Ancestry codes must match the codes used in anc_haps above.
Founder haplotypes are the founder individual IDs from the pedigree (values in
ids[[1]]) appearing twice, suffixed with "_pat" and "_mat", respectively (so
the parents of the founders are unadmixed, though founders be first generation
admixed this way).

loci_on_cols If TRUE, haps has loci on columns and individuals on rows; if FALSE (default),
loci are on rows and individuals on columns. If haps is a BEDMatrix object,
loci_on_cols is ignored (set automatically to TRUE internally).

geno_last_gen_admix_recomb 13

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

Details

This function wraps around several exported package functions to achieve its objectives, which are
roughly grouped into the following 4 phases. Phase 1 simulates recombination in the family with-
out explicit sequences. In particular, it initializes the founder haplotype structure (without variants
yet) using recomb_init_founders(), then simulates recombination breaks along the pedigree and
identifies all the founder haplotype blocks in the focal individuals using recomb_last_gen(), and
maps recombination breaks in cM to basepairs using recomb_map_inds(). Phase 2 reorganizes
this data to identify the unique founder blocks that were inherited, first by making the data tidy
with tidy_recomb_map_inds(), then applying recomb_founder_blocks_inherited(). Phase 3
initializes founder haplotypes using sparse matrices from the package Matrix, and draws inherited
founder subsequences according to their known ancestries and using the Li-Stephens-like haplotype
model of pop_recomb(). Phase 4 constructs the genotype matrices of focal individuals using the
haplotypes of the founders drawn in phase 3 and the known origin of focal blocks from founders
from phase 1, first constructing this data at the phased haplotype level with recomb_haplo_inds(),
reencoding as unphased genotypes using recomb_geno_inds(), and constructing the correspond-
ing local ancestry dosages using recomb_admix_inds().

Value

A named list with three elements:

• X: the genotype matrix of the focal individuals, as returned by recomb_geno_inds().

• Ls: a list, mapping each ancestry to its matrix of local ancestry dosages, as returned by
recomb_admix_inds().

• haplos: a phased version of the haplotypes and local ancestries of the focal individuals, struc-
tured as nested lists, as returned by recomb_haplo_inds().

See Also

recomb_init_founders(), recomb_last_gen(), recomb_map_inds(), tidy_recomb_map_inds(),
recomb_founder_blocks_inherited(), pop_recomb(), recomb_haplo_inds(), recomb_geno_inds(),
recomb_admix_inds().

Examples

library(tibble)

simulate random haplotypes for example
this toy data has 10 SNPs per chromosome, in fixed positions for simplicity
bim <- tibble(chr = rep(1 : 22, each = 10), pos = rep((1:10) * 1e6, 22))
and random haplotype data to go with this
n_ind_hap <- 10
m_loci <- nrow(bim)
NOTE ancestry labels can be anything but must match `founders_anc` below
anc_haps <- list(

14 kinship_fam

'AFR' = matrix(rbinom(m_loci * n_ind_hap, 1L, 0.5), nrow = m_loci, ncol = n_ind_hap),
'EUR' = matrix(rbinom(m_loci * n_ind_hap, 1L, 0.2), nrow = m_loci, ncol = n_ind_hap)

)

now simulate a very small family with one individual, 2 parents, 4 implicit grandparents
data <- fam_ancestors(2)
fam <- data$fam
ids <- data$ids
select ancestries for each of the 4 grandparents / founder haplotypes (unadmixed)
founders_anc <- c('AFR', 'AFR', 'AFR', 'EUR')
set names of founders with _pat/mat, needed to match recombination structure
order is odd but choices were random so that doesn't matter
names(founders_anc) <- c(

paste0(ids[[1]], '_pat'),
paste0(ids[[1]], '_mat')

)

this performs the simulation!
data <- geno_last_gen_admix_recomb(anc_haps, bim, recomb_map_hg38, 10, fam, ids, founders_anc)
this is the genotype matrix for the one admixed individual
data$X
the corresponding local ancestry dosage matrices
names match input labels
dataLsAFR
dataLsEUR
if desired, a more complete but more complicated structure holding phased haplotypes
and phased local ancestry information
data$haplos

kinship_fam Calculate kinship matrix of a pedigree with structured founders

Description

Calculates a full kinship matrix (between all individuals in the provided pedigree FAM table) taking
into account the relatedness of the founders as provided. Output agrees with kinship2::kinship()
but only when founders are unrelated/outbred (in other words, that function does not allow related-
ness between founders).

Usage

kinship_fam(kinship, fam, missing_vals = c("", 0))

Arguments

kinship The kinship matrix of the founders. This matrix must have column and row
names that identify each founder (matching codes in fam$id). Individuals may
be in a different order than fam$id. Extra individuals in kinship but absent
in fam$id will be silently ignored. A traditional pedigree calculation would

kinship_fam 15

use kinship = diag(n)/2 (plus appropriate column/row names), where n is
the number of founders, to model unrelated and outbred founders. However, if
kinship measures the population kinship estimates between founders, the out-
put is also a population kinship matrix (which combines the structural/ancestral
and local/pedigree relatedness values into one).

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The kinship matrix of the entire fam table, taking the relatedness of the founders into account. The
rows and columns of this kinship matrix correspond to fam$id in that order.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

The smallest pedigree, two parents and a child.
A minimal fam table with the three required columns.
Note "mother" and "father" have missing parent IDs, while "child" does not
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')

)

Kinship of the parents, here two unrelated/outbred individuals:
kinship <- diag(2)/2
Name the parents with same codes as in `fam`
(order can be different)
colnames(kinship) <- c('mother', 'father')
rownames(kinship) <- c('mother', 'father')
For a clearer example, make the father slightly inbred
(a self-kinship value that exceeds 1/2):
kinship[2,2] <- 0.6

Calculate the full kinship matrix
kinship_all <- kinship_fam(kinship, fam)

This is a 3x3 matrix with row/col names matching fam$id.
The parent submatrix equals the input (reordered),
but now there's relatedness to the child too

https://www.cog-genomics.org/plink/1.9/formats#fam

16 kinship_last_gen

kinship_all

kinship_last_gen Calculate kinship matrix for last generation of a pedigree with struc-
tured founders

Description

A wrapper around the more general kinship_fam(), specialized to save memory when only the
last generation is desired (kinship_fam() returns kinship for the entire pedigree in a single matrix).
This function assumes that generations are non-overlapping (met by the output of sim_pedigree()),
in which case each generation g can be drawn from generation g-1 data only. That way, only two
consecutive generations need be in memory at any given time. The partitioning of individuals into
generations is given by the ids parameter (again matches the output of sim_pedigree()).

Usage

kinship_last_gen(kinship, fam, ids, missing_vals = c("", 0))

Arguments

kinship The kinship matrix of the founders. This matrix must have column and row
names that identify each founder (matching codes in fam$id). Individuals may
be in a different order than fam$id. Extra individuals in kinship but absent
in fam$id will be silently ignored. A traditional pedigree calculation would
use kinship = diag(n)/2 (plus appropriate column/row names), where n is
the number of founders, to model unrelated and outbred founders. However, if
kinship measures the population kinship estimates between founders, the out-
put is also a population kinship matrix (which combines the structural/ancestral
and local/pedigree relatedness values into one).

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

ids A list containing vectors of IDs for each generation. All these IDs must be
present in fam$id. If IDs in fam and ids do not fully agree, the code processes
the IDs in the intersection, which is helpful when fam is pruned but ids is the
original (larger) set.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

pop_recomb 17

Value

The kinship matrix of the last generation (the intersection of ids[length(ids)] and fam$id).
The columns/rows of this matrix are last-generation individuals in the order that they appear in
fam$id.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

A small pedigree, two parents and two children.
A minimal fam table with the three required columns.
Note "mother" and "father" have missing parent IDs, while children do not
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child', 'sib'),
pat = c(NA, NA, 'father', 'father'),
mat = c(NA, NA, 'mother', 'mother')

)
need an `ids` list separating the generations
ids <- list(c('father', 'mother'), c('child', 'sib'))

Kinship of the parents, here two unrelated/outbred individuals:
kinship <- diag(2)/2
Name the parents with same codes as in `fam`
(order can be different)
colnames(kinship) <- c('mother', 'father')
rownames(kinship) <- c('mother', 'father')
For a clearer example, make the father slightly inbred
(a self-kinship value that exceeds 1/2):
kinship[2,2] <- 0.6

calculate the kinship matrix of the children
kinship2 <- kinship_last_gen(kinship, fam, ids)
kinship2

pop_recomb Simulate genotypes with linkage disequilibrium (LD) given a popula-
tion of haplotypes, using a Li-Stephens-like model of haplotype copy-
ing

Description

Each new genome has breaks drawn from the recombination model accelerated for the desired
number of generations G, and haplotypes are drawn and copied randomly from the population. This
results in a population with individuals drawn independently and identically distributed but with LD
within individuals, since the ancestral LD is preserved to some extent (attenuated by recombination

https://www.cog-genomics.org/plink/1.9/formats#fam

18 pop_recomb

after G generations). If there is no LD in haps, then the output will not have LD either except when
the number of columns of haps is very small (which resembles a bottleneck). This model does not
introduce mutations (unlike the original Li-Stephens). Genotypes, when requested, are simply sums
of independently drawn haplotype values.

Usage

pop_recomb(
haps,
bim,
map,
G,
n_ind,
geno = TRUE,
loci_on_cols = FALSE,
indexes_loci = NULL

)

Arguments

haps Regular matrix or BEDMatrix object of haplotype values, one row per locus, one
column per haplotype (half individual), or transposed if loci_on_cols = TRUE
and for BEDMatrix objects. If geno = TRUE (default), these values should be
numeric (recommended are zeroes and ones, indicating absence or presence of
reference allele), but if geno = FALSE code will work with any values, including
strings, which are just copied to outputs in blocks.

bim The table of variants of haps, which is a data.frame/tibble with at least two
columns: chr (must be numeric between 1 and the maximum chromosome in
map below for map to work) and pos (base pair position, usually an integer).

map The genetic map, a list of chromosomes each of which is a data.frame/tibble
with columns pos for base pair position and posg for genetic position.

G Number of generations since most recent common ancestor of population (to
multiply standard recombination rate)

n_ind Number of individuals (if geno = TRUE) or haplotypes (half individuals, if geno
= FALSE) desired in output

geno If TRUE (default) returns matrix of genotypes (values in 0,1,2 if haps is binary,
otherwise double whatever the range of values in haps is), otherwise returns
matrix of haplotypes (half individuals, same values of input haps)

loci_on_cols If TRUE, haps has loci on columns and individuals on rows; if FALSE (default),
loci are on rows and individuals on columns. If haps is a BEDMatrix object,
loci_on_cols is ignored (set automatically to TRUE internally).

indexes_loci Vector of indexes of loci to simulate, to request to simulate only a subset of the
loci in haps/bim. Default NULL simulates all loci in haps/bim.

prune_fam 19

Value

A matrix with the same number of rows as haps and n_ind columns, with values copied from haps
in (recombination) blocks if geno = FALSE, or sums of two such values drawn independently when
geno = TRUE.

Examples

simulate a tiny population with few SNPs for example
library(tibble)
bim <- tibble(

chr = c(2, 2, 3, 3, 22),
pos = c(100, 121, 53, 154, 66) * 1e6

)
m_loci <- nrow(bim)
Most often, haplotypes are binary data as simulated here.
Here haplotypes will be totally unstructured, but to have LD in the output use real human data
or data simulated to have LD
n_ind_haps <- 5
haps <- matrix(

rbinom(m_loci * n_ind_haps, 1, 0.5),
nrow = m_loci,
ncol = n_ind_haps

)
makes sense to have a lot of recombination at the population level
G <- 500
ask for small output for example
n_ind <- 7
use the recombination map for the same genome build as your data!
map <- recomb_map_hg38

simulate genotypes! (Usually more convenient, but phase information is lost)
X <- pop_recomb(haps, bim, map, G, n_ind)

simulate haplotypes instead (preserves true phase)
H <- pop_recomb(haps, bim, map, G, n_ind, geno = FALSE)

prune_fam Remove non-ancestors of a set of individuals from pedigree

Description

This function accepts an input pedigree and a list of individuals of interest, and returns the subset
of the pedigree including only the individuals of interest and their direct ancestors. This is useful
in simulations, to avoid modeling/drawing genotypes of individuals without descendants in the last
generation.

Usage

prune_fam(fam, ids, missing_vals = c("", 0))

20 recomb_admix_inds

Arguments

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

ids The list of individuals of interest, whose ancestors we want to keep. All must be
present in fam$id.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The filtered FAM table with non-ancestors of ids excluded. IDs that are NA-equivalent (see missing_vals)
will be mapped to NA.

Examples

construct a family with three founders, but one "bob" has no descendants
library(tibble)
fam <- tibble(

id = c('mom', 'dad', 'bob', 'child'),
pat = c(NA, NA, NA, 'dad'),
mat = c(NA, NA, NA, 'mom')

)
only want 'child' and its ancestors
ids <- 'child'
fam2 <- prune_fam(fam, ids)
the filtered pedigree has "bob" removed:
fam2

recomb_admix_inds Reduce haplotype ancestry data to population ancestry dosage matri-
ces

Description

This function accepts haplotype data, such as the output from recomb_haplo_inds() with ret_anc
= TRUE (required), and reduces it to a list of population ancestry dosage matrices. In this context,
"ancestors/ancestry" refer to haplotype blocks from specific ancestor individuals, whereas "popula-
tion ancestry" groups these ancestors into populations (such as African, European, etc.). Although
the haplotype data separates individuals and chromosomes into lists (the way it is simulated), the
output matrices concatenates data from all chromosomes into a single matrix, as it appears in sim-
pler simulations and real data, and matching the format of recomb_geno_inds().

recomb_admix_inds 21

Usage

recomb_admix_inds(haplos, anc_map, pops = sort(unique(anc_map$pop)))

Arguments

haplos A list of diploid individuals, each of which is a list with two haploid individuals
named pat and mat, each of which is a list of chromosomes, each of which must
be a list with a named element anc must give the vector of ancestor names per
position (the output format from recomb_haplo_inds() with ret_anc = TRUE).

anc_map A data.frame or tibble with two columns: anc lists every ancestor haplotype
name present in haplos, and pop the population assignment of that haplotype.

pops Optional order of populations in output, by default sorted alphabetically from
anc_map$pop.

Value

A named list of population ancestry dosage matrices, ordered as in pops, each of which counts
populations in both alleles (in 0, 1, 2), with individuals along columns in same order as haplos list,
and loci along rows in order of appearance concatenating chromosomes in numerical order.

See Also

recomb_fam() for drawing recombination (ancestor) blocks, defined in terms of genetic distance.

recomb_map_inds() for transforming genetic to basepair coordinates given a genetic map.

recomb_haplo_inds() for determining haplotypes of descendants given ancestral haplotypes (cre-
ates input to this function).

Examples

Lengthy code creates individuals with recombination data to map
The smallest pedigree, two parents and a child (minimal fam table).
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')

)
use latest human recombination map, but just first two chrs to keep this example fast
map <- recomb_map_hg38[1L:2L]
initialize parents with this other function
founders <- recomb_init_founders(c('father', 'mother'), map)
draw recombination breaks for child
inds <- recomb_fam(founders, fam)
now add base pair coordinates to recombination breaks
inds <- recomb_map_inds(inds, map)

also need ancestral haplotypes
these should be simulated carefully as needed, but for this example we make random data
haplo <- vector('list', length(map))

22 recomb_fam

names of ancestor haplotypes for this scenario
(founders of fam$id but each with "_pat" and "_mat" suffixes)
anc_names <- c('father_pat', 'father_mat', 'mother_pat', 'mother_mat')
n_ind <- length(anc_names)
number of loci per chr, for toy test
m_loci <- 10L
for (chr in 1L : length(map)) {

draw random positions
pos_chr <- sample.int(max(map[[chr]]$pos), m_loci)
draw haplotypes
X_chr <- matrix(

rbinom(m_loci * n_ind, 1L, 0.5),
nrow = m_loci,
ncol = n_ind

)
required column names!
colnames(X_chr) <- anc_names
add to structure, in a list
haplo[[chr]] <- list(X = X_chr, pos = pos_chr)

}
determine haplotypes and per-position ancestries of descendants given ancestral haplotypes
haplos <- recomb_haplo_inds(inds, haplo, ret_anc = TRUE)

define individual to population ancestry map
take four ancestral haplotypes from above, assign them population labels
anc_map <- tibble(

anc = anc_names,
pop = c('African', 'European', 'African', 'African')

)

finally, run desired function!
convert haplotypes structure to list of population ancestry dosage matrices
Xs <- recomb_admix_inds(haplos, anc_map)

recomb_fam Draw recombination breaks for autosomes from a pedigree

Description

Create random recombination breaks for all autosomes of all individuals in the provided pedigree
FAM table. Recombination lengths follow an exponential distribution with mean of 100 centiMor-
gans (cM). The output specifies identical-by-descent (IBD) blocks as ranges per chromosome (per
individual) and the founder chromosome they arose from (are IBD with). All calculations are in
terms of genetic distance (not base pairs), and no genotypes are constructed/drawn in this step.

Usage

recomb_fam(founders, fam, missing_vals = c("", 0))

recomb_fam 23

Arguments

founders The named list of founders with their chromosomes. For unstructured founders,
initialize with recomb_init_founders(). Each element of this list is a diploid
individual, which is a list with two haploid individuals named pat and mat, each
of which is a list of chromosomes (always identified by number, but may also
be named arbitrarily), each of which is a data.frame/tibble with implicit ranges
(posg is end coordinates in cM; start is the end of the previous block, zero for
the first block) and ancestors anc as strings. For true founders each chromosome
may be trivial (each chromosome is a single block with ID equal to itself but
distinguishing maternal from paternal copy), but input itself can be recombined
(for iterating). This list must have names that identify each founder (matching
codes in fam$id). Individuals may be in a different order than fam$id. Extra
individuals in founders but absent in fam$id will be silently ignored.

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

Value

The list of individuals with recombined chromosomes of the entire fam table, in the same format as
founders above. The names of this list correspond to fam$id in that order.

See Also

recomb_init_founders() to initialize founders for this function.

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

The smallest pedigree, two parents and a child.
A minimal fam table with the three required columns.
Note "mother" and "father" have missing parent IDs, while "child" does not
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')

)

initialize parents with this other function
Name the parents with same codes as in `fam`
(order can be different)
ids <- c('mother', 'father')
simulate three chromosomes with these lengths in cM

https://www.cog-genomics.org/plink/1.9/formats#fam

24 recomb_founder_blocks_inherited

lengs <- c(50, 100, 150)
founders <- recomb_init_founders(ids, lengs)

draw recombination breaks for the whole fam table now:
inds <- recomb_fam(founders, fam)

This is a length-3 list with names matching fam$id.
The parent data equals the input (reordered),
but now there's data to the child too
inds

recomb_founder_blocks_inherited

Identify IBD blocks of founders that were inherited by at least one
individual in this data

Description

Transforms a tidy table describing the founder blocks inherited by each individual into a more
summarized table describing the contiguous blocks of each founder inherited by at least one indi-
vidual. This is especially useful when the focal individuals are several generations removed from
the founders so only a small fraction of founder chromosomes are inherited.

Usage

recomb_founder_blocks_inherited(inds)

Arguments

inds The tidy table of recombination block data inherited in individuals from founders,
such as the return value of tidy_recomb_map_inds(). More broadly, it is a ta-
ble with a row for every IBD block, and at least these columns: "anc" is the
label of the founder individual, "chr" is the chromosome number, "start" and
"end" are the range of the block. Although this data usually also has columns
"ind" and "parent" identifying the individual and parental haplotype that inher-
ited the block, this information is not used by this function and is removed if
present.

Value

A table in a similar format as the input (columns "anc", "chr", "start", and "end") where each row is
a contiguous IBD block whose each basepair is inherited by at least one individual.

See Also

tidy_recomb_map_inds()

recomb_geno_inds 25

Examples

manually construct a toy sample input,
with individuals marked for clarity although they are not required
note first two individuals
library(tibble)
inds <- tibble(

ind = letters[1:3],
parent = c('pat', 'mat', 'mat'),
chr = c(1, 1, 2),
start = c(1, 800, 5),
end = c(1000, 2000, 100),
anc = c('f1', 'f1', 'f2')

)

the new table merges the first two rows,
because they overlapped from the same ancestor,
while the third row stays unchanged (after removing individual info)
founder_blocks <- recomb_founder_blocks_inherited(inds)

recomb_geno_inds Reduce haplotype data to genotype matrix

Description

This function accepts haplotype data, such as the output from recomb_haplo_inds(), and reduces
it to a genotype matrix. The haplotype data is more detailed because it is phased, while phase is
lost in the genotype representation. Moreover, the haplotype data separates individuals and chro-
mosomes into lists (the way it is simulated), but the output genotype matrix concatenates data from
all chromosomes into a single matrix, as it appears in simpler simulations and real data.

Usage

recomb_geno_inds(haplos)

Arguments

haplos A list of diploid individuals, each of which is a list with two haploid individuals
named "pat" and "mat", each of which is a list of chromosomes. Each chromo-
some can be a list, in which case the named element "x" must give the haplotype
vector (ideally with values in zero and one counting reference alleles, includ-
ing NA), otherwise the chromosome must be this vector (accommodating both
output formats from recomb_haplo_inds() automatically).

Value

The genotype matrix, which is the sum of the haplotype values (with values in 0, 1, 2, and NA,
counting reference alleles), with individuals along columns in same order as haplos list, and loci
along rows in order of appearance concatenating chromosomes in numerical order.

26 recomb_geno_inds

See Also

recomb_fam() for drawing recombination (ancestor) blocks, defined in terms of genetic distance.

recomb_map_inds() for transforming genetic to basepair coordinates given a genetic map.

recomb_haplo_inds() for determining haplotypes of descendants given ancestral haplotypes (cre-
ates input to this function).

Examples

Lengthy code creates individuals with recombination data to map
The smallest pedigree, two parents and a child (minimal fam table).
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')

)
use latest human recombination map, but just first two chrs to keep this example fast
map <- recomb_map_hg38[1L:2L]
initialize parents with this other function
founders <- recomb_init_founders(c('father', 'mother'), map)
draw recombination breaks for child
inds <- recomb_fam(founders, fam)
now add base pair coordinates to recombination breaks
inds <- recomb_map_inds(inds, map)

also need ancestral haplotypes
these should be simulated carefully as needed, but for this example we make random data
haplo <- vector('list', length(map))
names of ancestor haplotypes for this scenario
(founders of fam$id but each with "_pat" and "_mat" suffixes)
anc_names <- c('father_pat', 'father_mat', 'mother_pat', 'mother_mat')
n_ind <- length(anc_names)
number of loci per chr, for toy test
m_loci <- 10L
for (chr in 1L : length(map)) {

draw random positions
pos_chr <- sample.int(max(map[[chr]]$pos), m_loci)
draw haplotypes
X_chr <- matrix(

rbinom(m_loci * n_ind, 1L, 0.5),
nrow = m_loci,
ncol = n_ind

)
required column names!
colnames(X_chr) <- anc_names
add to structure, in a list
haplo[[chr]] <- list(X = X_chr, pos = pos_chr)

}
determine haplotypes of descendants given ancestral haplotypes
haplos <- recomb_haplo_inds(inds, haplo)

recomb_haplo_inds 27

finally, run desired function!
convert haplotypes structure to a plain genotype matrix
X <- recomb_geno_inds(haplos)

recomb_haplo_inds Construct haplotypes of individuals given their ancestral blocks and
the ancestral haplotype variants

Description

Construct haplotypes of individuals given their ancestral blocks and the ancestral haplotype variants

Usage

recomb_haplo_inds(inds, haplo, ret_anc = FALSE)

Arguments

inds A list of individuals in the same format as the output of recomb_fam() after
being processed with recomb_map_inds(). More specifically, each individual
is a list with two haploid individuals named pat and mat, each of which is
a list of chromosomes (always identified by number, but may also be named
arbitrarily), each of which is a data.frame/tibble with implicit ranges (pos is end
coordinates in base pairs; start is the end of the previous block plus one, 1 for
the first block) and ancestors anc as strings.

haplo The ancestral haplotypes, which is a list of chromosomes, each of which is a list
with two named elements: X is a matrix of haplotype markers (loci along rows,
ancestral individuals along columns, which must be named as in anc strings in
inds above), and pos is a vector of locus positions in base pair coordinates.
Haplotype matrix can be a sparse matrix from the package Matrix.

ret_anc If TRUE, returns local ancestries (per position) along with haplotypes, otherwise
only haplotypes are returned.

Value

A list of diploid individuals, each of which is a list with two haploid individuals named pat and
mat, each of which is a list of chromosomes. If ret_anc = FALSE (default), each chromosome is a
haplotype (vector of values copied from ancestors in haplo); if ret_anc = TRUE, each chromosome
is a list with named elements x for the haplotype vector and anc for the vector of ancestor name per
position.

See Also

recomb_fam() for drawing recombination (ancestor) blocks, defined in terms of genetic distance.

recomb_map_inds() for transforming genetic to basepair coordinates given a genetic map.

recomb_geno_inds() for transforming the output of this function from haplotypes (a nested lists
structure) to a plain genotype matrix.

28 recomb_init_founders

Examples

Lengthy code creates individuals with recombination data to map
The smallest pedigree, two parents and a child (minimal fam table).
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')

)
use latest human recombination map, but just first two chrs to keep this example fast
map <- recomb_map_hg38[1L:2L]
initialize parents with this other function
founders <- recomb_init_founders(c('father', 'mother'), map)
draw recombination breaks for child
inds <- recomb_fam(founders, fam)
now add base pair coordinates to recombination breaks
inds <- recomb_map_inds(inds, map)

also need ancestral haplotypes
these should be simulated carefully as needed, but for this example we make random data
haplo <- vector('list', length(map))
names of ancestor haplotypes for this scenario
(founders of fam$id but each with "_pat" and "_mat" suffixes)
anc_names <- c('father_pat', 'father_mat', 'mother_pat', 'mother_mat')
n_ind <- length(anc_names)
number of loci per chr, for toy test
m_loci <- 10L
for (chr in 1L : length(map)) {

draw random positions
pos_chr <- sample.int(max(map[[chr]]$pos), m_loci)
draw haplotypes
X_chr <- matrix(

rbinom(m_loci * n_ind, 1L, 0.5),
nrow = m_loci,
ncol = n_ind

)
required column names!
colnames(X_chr) <- anc_names
add to structure, in a list
haplo[[chr]] <- list(X = X_chr, pos = pos_chr)

}

finally, run desired function!
determine haplotypes of descendants given ancestral haplotypes
data <- recomb_haplo_inds(inds, haplo)

recomb_init_founders Initialize chromosome structures for founders

recomb_init_founders 29

Description

This function initializes what is otherwise a tedious structure for founders, to be used for simulating
recombination in a pedigree. The genetic structure is trivial, in that these "founder" chromosomes
are each of a single ancestral individual (none are recombined).

Usage

recomb_init_founders(ids, lengs)

Arguments

ids The list of IDs to use for each individual

lengs The lengths of each chromosome in centiMorgans (cM). If this vector is named,
the output inherits these chromosome names. If it is a list, it is assumed to
be a recombination map (see recomb_map_hg for examples) and the desired
lengths extracted automatically (taken as the last value of column posg of each
chromosome).

Value

A named list of diploid individuals, each of which is a list with two haploid individuals named pat
and mat, each of which is a list of chromosomes (inherits names of lengs if present), each of which
is a tibble with a single row and two columns: posg equals the chromosome length, and anc equals
the ID of the individual (from ids) concatenated with either _pat or _mat depending on which
parent it is.

See Also

recomb_fam() to simulate recombination across a pedigree using the founders initialized here.

Examples

version with explicit recombination lengths
ancs <- recomb_init_founders(c('a', 'b'), c(100, 200))
ancs

version using genetic map (uses provided human map) from which lengths are extracted
ancs <- recomb_init_founders(c('a', 'b'), recomb_map_hg38)
ancs

30 recomb_last_gen

recomb_last_gen Draw recombination breaks for autosomes for last generation of a
pedigree

Description

A wrapper around the more general recomb_fam(), specialized to save memory when only the last
generation is desired (recomb_fam() returns recombination blocks for the entire pedigree). This
function assumes that generations are non-overlapping (met by the output of sim_pedigree()), in
which case each generation g can be drawn from generation g-1 data only. That way, only two
consecutive generations need be in memory at any given time. The partitioning of individuals into
generations is given by the ids parameter (again matches the output of sim_pedigree()).

Usage

recomb_last_gen(founders, fam, ids, missing_vals = c("", 0))

Arguments

founders The named list of founders with their chromosomes. For unstructured founders,
initialize with recomb_init_founders(). Each element of this list is a diploid
individual, which is a list with two haploid individuals named pat and mat, each
of which is a list of chromosomes (always identified by number, but may also
be named arbitrarily), each of which is a data.frame/tibble with implicit ranges
(posg is end coordinates in cM; start is the end of the previous block, zero for
the first block) and ancestors anc as strings. For true founders each chromosome
may be trivial (each chromosome is a single block with ID equal to itself but
distinguishing maternal from paternal copy), but input itself can be recombined
(for iterating). This list must have names that identify each founder (matching
codes in fam$id). Individuals may be in a different order than fam$id. Extra
individuals in founders but absent in fam$id will be silently ignored.

fam The pedigree data.frame, in plink FAM format. Only columns id, pat, and mat
are required. id must be unique and non-missing. Founders must be present,
and their pat and mat values must be missing (see below). Non-founders must
have both their parents be non-missing. Parents must appear earlier than their
children in the table.

ids A list containing vectors of IDs for each generation. All these IDs must be
present in fam$id. If IDs in fam and ids do not fully agree, the code processes
the IDs in the intersection, which is helpful when fam is pruned but ids is the
original (larger) set.

missing_vals The list of ID values treated as missing. NA is always treated as missing. By
default, the empty string (”) and zero (0) are also treated as missing (remove
values from here if this is a problem).

recomb_map_fix_ends_chr 31

Value

The list of individuals with recombined chromosomes of the last generation (the intersection of
ids[length(ids)] and fam$id), in the same format as founders above. The names of this list
are last-generation individuals in the order that they appear in fam$id.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

A small pedigree, two parents and two children.
A minimal fam table with the three required columns.
Note "mother" and "father" have missing parent IDs, while children do not
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child', 'sib'),
pat = c(NA, NA, 'father', 'father'),
mat = c(NA, NA, 'mother', 'mother')

)
need an `ids` list separating the generations
ids <- list(c('father', 'mother'), c('child', 'sib'))

initialize parents with this other function
simulate three chromosomes with these lengths in cM
lengs <- c(50, 100, 150)
founders <- recomb_init_founders(ids[[1]], lengs)

draw recombination breaks for the children
inds <- recomb_last_gen(founders, fam, ids)

recomb_map_fix_ends_chr

Extrapolate and shift recombination map of one chromosome to ends

Description

Given an existing recombination map and a chromosome length in base pairs, extrapolates the map
to ensure all positions are covered, and shifts to ensure position one in basepairs corresponds to
position 0 in genetic position. Recombination rates are extrapolated from the first and last 10Mb
of data by default (separately per end). Therefore fixes the fact that common maps start genetic
position zero at base pair position >> 1 and do not extend to ends (some SNPs from modern projects
fall out of range without fixes).

Usage

recomb_map_fix_ends_chr(map, pos_length, pos_delta = 10000000L)

https://www.cog-genomics.org/plink/1.9/formats#fam

32 recomb_map_hg

Arguments

map A tibble with two columns: pos position in base pairs, and posg position in
centiMorgans (cM).

pos_length The length of the chromosome in base pairs.

pos_delta The size of the window used to extrapolate recombination rates.

Value

The extrapolated recombination map, shifted so the first non-trivial position maps to the genetic
distance expected from the extrapolated rate at the beginning, then added a first trivial position
(pos=1, posg=0) and final basepair position at length of chromosome and expected genetic position
from end extrapolation.

See Also

recomb_map_simplify_chr() to simplify recombination maps to a desired numerical accuracy.

Examples

library(tibble)
create a toy recombination map with at least 10Mb at each end
map <- tibble(

pos = c(3L, 15L, 100L, 120L) * 1e6L,
posg = c(0, 10.4, 90.1, 110)

)
and length
pos_length <- 150L * 1e6L

apply function!
map_fixed <- recomb_map_fix_ends_chr(map, pos_length)
inspect
map_fixed

recomb_map_hg Simplified recombination maps for human genomes

Description

Human genetic recombination maps for builds 38 (GRCh38/hg38) and 37 (GRCh37/hg19, be-
low suffixed as hg37 for simplicity although technically incorrect). Processed each first with
recomb_map_fix_ends_chr() to shift and extrapolate to sequence ends, then simplified with recomb_map_simplify_chr()
to remove all values that can be interpolated with an error of up to tol = 0.1, in order to reduce their
sizes and interpolation runtime. Defaults were used, which resulted in extrapolated recombination
rates close to and centered around the average of 1e-6 cM/base). Autosomes only.

recomb_map_inds 33

Usage

recomb_map_hg38

recomb_map_hg37

Format

A list with 22 elements (autosomes, not named), each a tibble with two columns defining the re-
combination map at that chromosome:

• pos: position in base pairs

• posg: position in centiMorgans (cM)

An object of class list of length 22.

Source

Raw genetic maps downloaded from this location prior to above processing: https://bochet.
gcc.biostat.washington.edu/beagle/genetic_maps/

Chromosome lengths from: https://www.ncbi.nlm.nih.gov/grc/human/data

recomb_map_inds Map recombination breaks from genetic positions to base pair coordi-
nates

Description

Given a list of individuals with recombination breaks given in genetic distance (such as the output
of recomb_fam()), and a genetic map (see recomb_map_hg), this function determines all positions
in base pair coordinates. If base pair positions existed in input, they are overwritten.

Usage

recomb_map_inds(inds, map)

Arguments

inds The list of individuals, each of which is a list with two haploid individuals named
pat and mat, each of which is a list of chromosomes (always identified by num-
ber, but may also be named arbitrarily), each of which is a data.frame/tibble with
implicit ranges (posg is end coordinates in cM; start is the end of the previous
block, zero for the first block) and ancestors anc as strings.

map The genetic map, a list of chromosomes each of which is a data.frame/tibble
with columns pos for base pair position and posg for genetic position.

https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/
https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/
https://www.ncbi.nlm.nih.gov/grc/human/data

34 recomb_map_simplify_chr

Details

Genetic positions are converted to base pair positions from the provided map using linear interpo-
lation, using stats::approx() with options rule = 2 (out of range cases are set to nearest end’s
value) and ties = list('ordered', mean) (assume data is ordered, interpolate ties in genetic
position in map using mean of base pair positions). Output will be incorrect, without throwing
errors, if genetic map is not ordered. Base pair positions are rounded to integers.

Value

The input list of individuals, with each chromosome added column pos corresponding to end coor-
dinate in base pairs. Each chromosome has columns reordered so pos, posg, and anc appear first,
and any additional columns appear afterwards.

See Also

recomb_fam() for drawing recombination breaks of individuals from a pedigree.

recomb_map_hg for simplified human recombination maps included in this package.

Examples

Lengthy code creates individuals with recombination data to map
The smallest pedigree, two parents and a child (minimal fam table).
library(tibble)
fam <- tibble(

id = c('father', 'mother', 'child'),
pat = c(NA, NA, 'father'),
mat = c(NA, NA, 'mother')

)
use latest human recombination map, but just first two chrs to keep this example fast
map <- recomb_map_hg38[1:2]
initialize parents with this other function
founders <- recomb_init_founders(c('father', 'mother'), map)
draw recombination breaks for child
inds <- recomb_fam(founders, fam)

now use this function to add base pair coordinates for recombination breaks!
inds <- recomb_map_inds(inds, map)

recomb_map_simplify_chr

Simplify recombination map of one chromosome to a desired numeri-
cal precision

recomb_map_simplify_chr 35

Description

Given an input recombination map, this function iteratively removes rows that can be interpolated
to less than a given error tol. This is a heuristic that works very well in practice, resulting in
average interpolation errors well below tol, and maximum final errors no greater than 3 * tol in
our internal benchmarks (expected in extremely concave or convex regions of the map; final errors
are rarely above tol with few exceptions).

Usage

recomb_map_simplify_chr(map, tol = 0.1)

Arguments

map A tibble with two columns: pos position in base pairs, and posg position in
centiMorgans (cM).

tol Tolerance of interpolation errors, in cM.

Details

This function reduces recombination map sizes drastically, in order to include them in packages,
and also makes linear interpolation faster. This simplification operation can be justified as the
precision of many existing maps is both limited and overstated, and a high accuracy is not needed
for simulations with many other approximations in place.

Value

The recombination map with rows (positions) removed (if they are interpolated with errors below
tol in most cases).

See Also

recomb_map_fix_ends_chr() to shift and extrapolate recombination map to ends of chromosome.

Examples

library(tibble)
create a toy recombination map to simplify
in this case all middle rows can be interpolated from the ends with practically no error
map <- tibble(

pos = c(1L, 1e6L, 2e6L, 3e6L),
posg = c(0.0, 1.0, 2.0, 3.0)

)

simplify map!
map_simple <- recomb_map_simplify_chr(map)
inspect
map_simple

36 sim_pedigree

sim_pedigree Construct a random pedigree

Description

Specify the number of individuals per generation, and some other optional parameters, and a sin-
gle pedigree with those properties will be simulated, where close relatives are never paired, sex is
drawn randomly per individual and pairings are strictly across opposite-sex individuals, and oth-
erwise closest individuals (on an underlying 1D geography given by their index) are paired in a
random order. Pairs are reordered based on the average of their indexes, where their children are
placed (determines their indexes in the 1D geography). The procedure may leave some individuals
unpaired in the next generation, and family sizes vary randomly (with a fixed minimum family size)
to achieve the desired population size in each generation.

Usage

sim_pedigree(
n,
G = length(n),
sex = draw_sex(n[1]),
kinship_local = diag(n[1])/2,
cutoff = 1/4^3,
children_min = 1L,
full = FALSE

)

Arguments

n The number of individuals per generation. If scalar, the number of generations
G >= 2 must also be specified. Otherwise, the length of n is the number of gen-
erations.

G The number of generations (optional). Note G == 1 is founders only, so it is
invalid (there is no pedigree). Must specify a G >= 2 if n is a scalar. If both G is
specified and length(n) > 1, both values must agree.

sex The numeric sex values for the founders (1L for male, 2L for female). By default
they are drawn randomly using draw_sex().

kinship_local The local kinship matrix of the founder population. The default value is half
the identity matrix, which corresponds to locally unrelated and locally outbred
founders. This "local" kinship is the basis for all kinship calculations used to
decide on close relative avoidance. The goal is to make a decision to not pair
close relatives based on the pedigree only (and not based on population structure,
which otherwise increases all kinship values), so the default value is appropriate.

cutoff Local kinship values strictly less than cutoff are required for pairs. The default
value of 1/4^3 corresponds to second cousins, so those and closer relatives are
forbidden pairs (but a third cousin pair is allowed).

sim_pedigree 37

children_min The minimum number of children per family. Must be 0 or larger, but not ex-
ceed the average number of children per family in each generation (varies de-
pending on how many individuals were left unpaired, but this upper limit is
approximately 2 * n[i] / n[i-1] for generation i). The number of children for
each given family is first chosen as children_min plus a Poisson random vari-
able with parameter equal to the mean number of children per family needed to
achieve the desired population size (n) minus children_min. As these numbers
may not exactly equal the target population size, random families are incre-
mented or decremented (respecting the minimum family size) by single counts
until the target population size is met.

full If TRUE, part of the return object is a list of local kinship matrices for every gen-
eration. If FALSE (default), only the local kinship matrix of the last generation is
returned.

Value

A list with these named elements:

• fam: the pedigree, a tibble in plink FAM format. Following the column naming convention of
the related genio package, it contains columns:

– fam: Family ID, trivial "fam1" for all individuals
– id: Individual ID, in this case a code of format (in regular expression) "(\d+)-(\d+)" where

the first integer is the generation number and the second integer is the index number (1 to
n[g] for generation g).

– pat: Paternal ID. Matches an id except for founders, which have fathers set to NA.
– mat: Maternal ID. Matches an id except for founders, which have mothers set to NA.
– sex: integers 1L (male) or 2L (female) which were drawn randomly; no other values

occur in these outputs.
– pheno: Phenotype, here all 0 (missing value).

• ids: a list of IDs for each generation (indexed in the list by generation).

• kinship_local: if full = FALSE, the local kinship matrix of the last generation, otherwise a
list of local kinship matrices for every generation.

See Also

Plink FAM format reference: https://www.cog-genomics.org/plink/1.9/formats#fam

Examples

number of individuals for each generation
n <- c(15, 20, 25)

create random pedigree with 3 generations, etc
data <- sim_pedigree(n)

this is the FAM table defining the entire pedigree,
which is the most important piece of information desired!
data$fam

https://www.cog-genomics.org/plink/1.9/formats#fam

38 tidy_recomb_map_inds

the IDs separated by generation
data$ids

bonus: the local kinship matrix of the final generation
data$kinship_local

tidy_recomb_map_inds Tidy recombination block data inherited in individuals from founders

Description

This function takes a compact structure of nested lists and tables describing the founder blocks
of identity by descent (IBD) inherited in a pedigree with recombination, and outputs the same
data organized as a single table following tidy conventions, which is easy to manipulate externally
although it is also larger and more redundant.

Usage

tidy_recomb_map_inds(inds)

Arguments

inds The output value from recomb_map_inds. In particular, a list of named indi-
viduals, each of which is a list with two parents labeled "pat" and "mat", each
of which is a list of chromosomes identified by index, each of which is a table
with one row per IBD block, and at least two columns, labeled "anc" is the label
of the founder individual from which this block was derived, and "pos" which
is the end coordinate in basepairs of the block (the start of the block is given
implicitly by the "pos" of the previous row plus 1, or 1 for the first block).

Value

A table with one row per IBD block, and the following columns: "ind" containing the label of the in-
dividual as given in the input object, "parent" equal to either "pat" or "mat", "chr" the chromosome,
"start" and "end" the range of the block in basepairs, and "anc" the label of the founder individual.

See Also

recomb_map_inds()

Examples

simulate the ancestors of one person to 3 generations
obj <- fam_ancestors(3)
fam <- obj$fam
ids <- obj$ids
initialize founders

tidy_recomb_map_inds 39

founders <- recomb_init_founders(ids[[1]], recomb_map_hg38)
draw recombination breaks along pedigree, with coordinates in genetic distance (centiMorgans),
with information for last generation only
inds <- recomb_last_gen(founders, fam, ids)
map recombination break coordinates to base pairs
inds <- recomb_map_inds(inds, recomb_map_hg38)

now that the input structure is ready, this function returns a tidy table version!
inds_tidy <- tidy_recomb_map_inds(inds)

Index

∗ datasets
recomb_map_hg, 32

admix_fam, 2
admix_fam(), 4
admix_last_gen, 4

bim_add_posg, 5

draw_sex, 7
draw_sex(), 36

fam_ancestors, 7

geno_fam, 8
geno_fam(), 10
geno_last_gen, 10
geno_last_gen_admix_recomb, 11

kinship2::kinship(), 14
kinship_fam, 14
kinship_fam(), 16
kinship_last_gen, 16

pop_recomb, 17
pop_recomb(), 11–13
prune_fam, 19

recomb_admix_inds, 20
recomb_admix_inds(), 13
recomb_fam, 22
recomb_fam(), 21, 26, 27, 29, 30, 33, 34
recomb_founder_blocks_inherited, 24
recomb_founder_blocks_inherited(), 13
recomb_geno_inds, 25
recomb_geno_inds(), 13, 20, 27
recomb_haplo_inds, 27
recomb_haplo_inds(), 11, 13, 20, 21, 25, 26
recomb_init_founders, 28
recomb_init_founders(), 13, 23, 30
recomb_last_gen, 30

recomb_last_gen(), 11, 13
recomb_map_fix_ends_chr, 31
recomb_map_fix_ends_chr(), 32, 35
recomb_map_hg, 5, 6, 29, 32, 33, 34
recomb_map_hg37 (recomb_map_hg), 32
recomb_map_hg38 (recomb_map_hg), 32
recomb_map_inds, 33
recomb_map_inds(), 13, 21, 26, 27, 38
recomb_map_simplify_chr, 34
recomb_map_simplify_chr(), 32

sim_pedigree, 36
sim_pedigree(), 4, 8, 10, 16, 30
stats::approx(), 6, 34

tidy_recomb_map_inds, 38
tidy_recomb_map_inds(), 13, 24

40

	admix_fam
	admix_last_gen
	bim_add_posg
	draw_sex
	fam_ancestors
	geno_fam
	geno_last_gen
	geno_last_gen_admix_recomb
	kinship_fam
	kinship_last_gen
	pop_recomb
	prune_fam
	recomb_admix_inds
	recomb_fam
	recomb_founder_blocks_inherited
	recomb_geno_inds
	recomb_haplo_inds
	recomb_init_founders
	recomb_last_gen
	recomb_map_fix_ends_chr
	recomb_map_hg
	recomb_map_inds
	recomb_map_simplify_chr
	sim_pedigree
	tidy_recomb_map_inds
	Index

