
Package: simtrait (via r-universe)
October 14, 2024

Title Simulate Complex Traits from Genotypes

Version 1.1.4.9000

Description Simulate complex traits given a SNP genotype matrix and
model parameters (the desired heritability, optional
environment group effects, number of causal loci, and either
the true ancestral allele frequencies used to generate the
genotypes or the mean kinship for a real dataset). Emphasis is
on avoiding common biases due to the use of estimated allele
frequencies. The code selects random loci to be causal,
constructs coefficients for these loci and random independent
non-genetic effects, and can optionally generate random group
effects. Traits can follow three models: random coefficients,
fixed effect sizes, and infinitesimal (multivariate normal).
GWAS method benchmarking functions are also provided.
Described in Yao and Ochoa (2023) <doi:10.7554/eLife.79238>.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Imports PRROC

Suggests popkin, testthat, knitr, rmarkdown, bnpsd, BEDMatrix

VignetteBuilder knitr

URL https://github.com/OchoaLab/simtrait

BugReports https://github.com/OchoaLab/simtrait/issues

Repository https://ochoalab.r-universe.dev

RemoteUrl https://github.com/ochoalab/simtrait

RemoteRef HEAD

RemoteSha 6bfb6f7dce15488f7a84a4376537b6e5cf341ca1

1

https://doi.org/10.7554/eLife.79238
https://github.com/OchoaLab/simtrait
https://github.com/OchoaLab/simtrait/issues

2 allele_freqs

Contents
allele_freqs . 2
cov_trait . 3
herit_loci . 5
pval_aucpr . 6
pval_infl . 7
pval_power_calib . 8
pval_srmsd . 9
pval_type_1_err . 10
rmsd . 11
simtrait . 12
sim_trait . 14
sim_trait_mvn . 17

Index 19

allele_freqs Compute locus allele frequencies

Description

On a regular matrix, this is essentially a wrapper for colMeans() or rowMeans() depending on
loci_on_cols. On a BEDMatrix object, the locus allele frequencies are computed keeping memory
usage low.

Usage

allele_freqs(
X,
loci_on_cols = FALSE,
fold = FALSE,
m_chunk_max = 1000,
subset_ind = NULL

)

Arguments

X The genotype matrix (regular R matrix or BEDMatrix object). Missing values
are ignored in averages.

loci_on_cols If TRUE, X has loci on columns and individuals on rows; if false (the default),
loci are on rows and individuals on columns. If X is a BEDMatrix object, code
assumes loci on columns (loci_on_cols is ignored).

fold If TRUE, allele frequencies are converted to minor allele frequencies. Default is
to return frequencies for the given allele counts in X (regardless of whether it is
the minor or major allele).

cov_trait 3

m_chunk_max BEDMatrix-specific, sets the maximum number of loci to process at the time. If
memory usage is excessive, set to a lower value than default (expected only for
extremely large numbers of individuals).

subset_ind Optionally subset individuals by providing their indexes (negative indexes to
exclude) or a boolean vector (in other words, the usual ways to subset matrices).
Most useful for BEDMatrix inputs, to subset chunks and retain low memory
usage.

Value

The vector of allele frequencies, one per locus. Names are set to the locus names, if present.

Examples

Construct toy data
X <- matrix(

c(0, 1, 2,
1, 0, 1,
1, NA, 2),

nrow = 3,
byrow = TRUE

)

row means
allele_freqs(X)
c(1/2, 1/3, 3/4)

row means, in minor allele frequencies
allele_freqs(X, fold = TRUE)
c(1/2, 1/3, 1/4)

col means
allele_freqs(X, loci_on_cols = TRUE)
c(1/3, 1/4, 5/6)

cov_trait The model covariance matrix of the trait

Description

This function returns the expected covariance matrix of trait vectors simulated via sim_trait()
and sim_trait_mvn(). Below there are n individuals.

Usage

cov_trait(kinship, herit, sigma_sq = 1, labs = NULL, labs_sigma_sq = NULL)

4 cov_trait

Arguments

kinship The n-by-n kinship matrix of the individuals. These values should be scaled such
that an outbred individual has 1/2 self-kinship, the parent-child relationship is
1/4, etc (which is half the values sometimes defined for kinship).

herit The desired heritability (proportion of trait variance due to genetics).

sigma_sq The desired parametric variance factor of the trait (scalar, default 1). Corre-
sponds to the variance of an outbred individual.

labs Optional labels assigning individuals to groups, to simulate environment group
effects. Values can be numeric or strings, simply assigning the same values
to individuals in the same group. If vector (single environment), length must
be number of individuals. If matrix (multiple environments), individuals must
be along rows, and environments along columns. The environments are not
required to be nested. If this is non-NULL, then labs_sigma_sq must also be
given!

labs_sigma_sq Optional vector of environment effect variance proportions, one value for each
environment given in labs (a scalar if labs is a vector, otherwise its length
should be the number of columns of labs). Ignored unless labs is also given.
As these are variance proportions, each value must be non-negative and sum(labs_sigma_sq)
+ herit <= 1 is required so residual variance is non-negative.

Value

The n-by-n trait covariance matrix, which under no environment effects equals sigma_sq * (herit
* 2 * kinship + sigma_sq_residual * I), where I is the n-by-n identity matrix and sigma_sq_residual
= 1 - herit. If there are labels, covariance will include the specified block diagonal effects and
sigma_sq_residual = 1 - herit - sum(labs_sigma_sq).

See Also

sim_trait(), sim_trait_mvn()

Examples

create a dummy kinship matrix
kinship <- matrix(

data = c(
0.6, 0.1, 0.0,
0.1, 0.6, 0.1,
0.0, 0.1, 0.6

),
nrow = 3,
byrow = TRUE

)
covariance of simulated traits
V <- cov_trait(kinship = kinship, herit = 0.8)

herit_loci 5

herit_loci Per-locus heritability contribution from allele frequency and causal
coefficient

Description

Calculates the vector of per-locus heritability values, with each causal locus i calculated as h_i^2 =
2 * p_i * (1 - p_i) * beta_i^2 / sigma_sq, where p_i is the ancestral allele frequency, beta_i
is the causal coefficient, and sigma_sq is the trait variance scale. These are all assumed to be true
parameters (not estimated). These per-locus heritabilities equal per-locus effect sizes divided by
sigma_sq.

Usage

herit_loci(p_anc, causal_coeffs, causal_indexes = NULL, sigma_sq = 1)

Arguments

p_anc The ancestral allele frequency vector.

causal_coeffs The vector of causal coefficients.

causal_indexes The optional vector of causal indexes. If NULL (default), p_anc and causal_coeffs
are assumed to be for causal loci only (must be the same length). If non-NULL,
causal_loci is used to subset both p_anc and causal_coeffs as needed: if
each of these vectors is longer than causal_loci, then it is subset; otherwise
they must have equal lengths as causal_loci or an error is thrown.

sigma_sq The parametric variance factor of the trait (default 1). This factor corresponds
to the variance of an outbred individual.

Value

The vector of per-locus heritability contributions. The sum of these values gives the overall heri-
tability. This value can be greater than one (or wrong, more generally) if sigma_sq is misspecified.

See Also

sim_trait() generates random traits by drawing causal loci and their coefficients to fit a desired
heritability. cov_trait() calculates the covariance structure of the random traits.

Examples

create toy random data
m_loci <- 10
ancestral allele frequencies
p_anc <- runif(m_loci)
causal loci
causal_coeffs <- rnorm(m_loci) / m_loci
resulting heritability contributions vector

6 pval_aucpr

herit_loci(p_anc, causal_coeffs)

pval_aucpr Area under the precision-recall curve

Description

Calculates the Precision-Recall (PR) Area Under the Curve (AUC) given a vector of p-values and
the true classes (causal (alternative) vs non-causal (null)). This is a wrapper around PRROC::pr.curve(),
which actually calculates the AUC (see that for details).

Usage

pval_aucpr(pvals, causal_indexes, curve = FALSE)

Arguments

pvals The vector of association p-values to analyze. NA values are allowed in input, are
internally set to 1 (worst score) prior to AUC calculation (to prevent methods to
get good AUCs by setting more cases to NA). Non-NA values outside of [0,1] will
trigger an error.

causal_indexes The vector of causal indexes, defining the true classes used for AUC calculation.
Values of causal_indexes as returned by sim_trait work. There must be at
least one causal index and at least one non-causal case.

curve If FALSE (default), only scalar AUC is returned. If TRUE, then curve = TRUE is
passed to PRROC::pr.curve() and the full object (class PRROC) is returned (see
below).

Value

If curve = FALSE, returns the PR AUC scalar value. If curve = TRUE, returns the PRROC object as
returned by PRROC::pr.curve(), which can be plotted directly, and which contains the AUC under
the named value auc.integral.

However, if the input pvals is NULL (taken for case of singular association test, which is rare but
may happen), then the returned value is NA.

See Also

PRROC::pr.curve(), which is used internally by this function.

pval_power_calib() for calibrated power estimates.

pval_infl 7

Examples

simulate truly null p-values, which should be uniform
pvals <- runif(10)
for toy example, take the first two p-values to be truly causal
causal_indexes <- 1:2
calculate desired measure
pval_aucpr(pvals, causal_indexes)

pval_infl Calculate inflation factor from p-values

Description

The inflation factor is defined as the median association test statistic divided by the expected median
under the null hypothesis, which is typically assumed to have a chi-squared distribution. This
function takes a p-value distribution and maps its median back to the chi-squared value (using the
quantile function) in order to compute the inflation factor in the chi-squared scale. The full p-value
distribution (a mix of null and alternative cases) is used to calculate the desired median value (the
true causal_loci is not needed, unlike pval_srmsd()).

Usage

pval_infl(pvals, df = 1)

Arguments

pvals The vector of association p-values to analyze. This function assumes all p-values
are provided (a mix of null and alternative tests). NA values are allowed in input
and removed. Non-NA values outside of [0, 1] will trigger an error.

df The degrees of freedom of the assumed chi-squared distribution (default 1).

Value

The inflation factor

See Also

pval_srmsd(), a more robust measure of null p-value accuracy, but which requires knowing the
true causal loci.

pval_type_1_err() for classical type I error rate estimates.

Examples

simulate truly null p-values, which should be uniform
pvals <- runif(10)
calculate desired measure
pval_infl(pvals)

8 pval_power_calib

pval_power_calib Estimate calibrated power

Description

Given a significance level alpha and p-values with known causal status, this function estimates the
calibrated power. First it estimates the p-value threshold at which the desired type I error of alpha
is achieved, then it uses this p-value threshold (not alpha) to estimate statistical power. Note that
these simple empirical estimates are likely to be inaccurate unless the number of p-values is much
larger than 1/alpha.

Usage

pval_power_calib(pvals, causal_indexes, alpha = 0.05)

Arguments

pvals The vector of association p-values to analyze. This function assumes all p-values
are provided (a mix of null and alternative tests). NA values are allowed in input
and removed. Non-NA values outside of [0, 1] will trigger an error.

causal_indexes The vector of causal indexes, defining the true classes used for calibrated power
estimation. Values of causal_indexes as returned by sim_trait work. There
must be at least one causal index and at least one non-causal case.

alpha The desired significance level (default 0.05). May be a vector.

Value

The calibrated power estimates at each alpha

See Also

pval_aucpr(), a robust proxy for calibrated power that integrates across significance thresholds.

Examples

simulate truly null p-values, which should be uniform
pvals <- runif(10)
for toy example, take the first two p-values to be truly causal
causal_indexes <- 1:2
estimate desired measure
pval_power_calib(pvals, causal_indexes)

pval_srmsd 9

pval_srmsd Signed RMSD measure of null p-value uniformity

Description

Quantifies null p-value uniformity by computing the RMSD (root mean square deviation) between
the sorted observed null (truly non-causal) p-values and their expected quantiles under a uniform
distribution. Meant as a more robust alternative to the "inflation factor" common in the GWAS
literature, which compares median values only and uses all p-values (not just null p-values). Our
signed RMSD, to correspond with the inflation factor, includes a sign that depends on the median
null p-value: positive if this median is <= 0.5 (corresponds with test statistic inflation), negative
otherwise (test statistic deflation). Zero corresponds to uniform null p-values, which arises in ex-
pectation only if test statistics have their assumed null distribution (there is no misspecification,
including inflation).

Usage

pval_srmsd(pvals, causal_indexes, detailed = FALSE)

Arguments

pvals The vector of association p-values to analyze. This function assumes all p-values
are provided (a mix of null and alternative tests). NA values are allowed in input
and removed. Non-NA values outside of [0, 1] will trigger an error.

causal_indexes The vector of causal indexes, whose p-values will be omitted. Values of causal_indexes
as returned by sim_trait work. This parameter is required to prevent use of this
function except when the true status of every test (null vs alternative) is known.
Set to NULL if all loci are truly null (non-causal). Otherwise, causal_indexes
must have at least one causal index.

detailed If FALSE (default) only SRMSD is returned. If TRUE, sorted null p-values without
NAs and their expectations are returned (useful for plots).

Value

If detailed is FALSE, returns the signed RMSD between the observed p-value order statistics and
their expectation under true uniformity. If detailed is TRUE, returns data useful for plots, a named
list containing:

• srmsd: The signed RMSD between the observed p-value order statistics and their expectation
under true uniformity.

• pvals_null: Sorted null p-values (observed order statistics). If any input null p-values were
NA, these have been removed here (removed by sort()).

• pvals_unif: Expected order statistics assuming uniform distribution, same length as pvals_null.

If the input pvals is NULL (taken for case of singular association test, which is rare but may happen),
then the returned value is NA if detailed was FALSE, or otherwise the list contains NA, NULL and
NULL for the above three items.

10 pval_type_1_err

See Also

rmsd() for the generic root-mean-square deviation function.

pval_infl() for the more traditional inflation factor, which focuses on the median of the full
distribution (combination of causal and null cases).

pval_type_1_err() for classical type I error rate estimates.

Examples

simulate truly null p-values, which should be uniform
pvals <- runif(10)
for toy example, take the first p-value to be truly causal (will be ignored below)
causal_indexes <- 1
calculate desired measure
pval_srmsd(pvals, causal_indexes)

pval_type_1_err Estimate type I error rate

Description

Given a significance level and p-values with known causal status, this function estimates the type I
error rate, defined as the proportion of null p-values that are below or equal to the threshold. Note
that these simple empirical estimates are likely to be zero unless the number of p-values is much
larger than 1/alpha.

Usage

pval_type_1_err(pvals, causal_indexes, alpha = 0.05)

Arguments

pvals The vector of association p-values to analyze. This function assumes all p-values
are provided (a mix of null and alternative tests). NA values are allowed in input
and removed. Non-NA values outside of [0, 1] will trigger an error.

causal_indexes The vector of causal indexes, whose p-values will be omitted. Values of causal_indexes
as returned by sim_trait work. This parameter is required to prevent use of this
function except when the true status of every test (null vs alternative) is known.
Set to NULL if all loci are truly null (non-causal). Otherwise, causal_indexes
must have at least one causal index.

alpha The desired significance level (default 0.05). May be a vector.

Value

The type I error rate estimates at each alpha

rmsd 11

See Also

pval_srmsd() to directly quantify null p-value uniformity, a more robust alternative to type I error
rate.

pval_infl() for the more traditional inflation factor, which focuses on the median of the full
distribution (combination of causal and null cases).

Examples

simulate truly null p-values, which should be uniform
pvals <- runif(10)
for toy example, take the first p-value to be truly causal (will be ignored below)
causal_indexes <- 1
estimate desired measure
pval_type_1_err(pvals, causal_indexes)

rmsd Root mean square deviation

Description

Calculates the euclidean distance between two vectors x and y divided by the square root of the
lengths of the vectors. NA values are ignored by default when calculating the mean squares (so the
denominator is the number of non-NA differences).

Usage

rmsd(x, y, na.rm = TRUE)

Arguments

x The first vector to compare (required).
y The second vector to compare (required). Lengths of x and y must be equal.
na.rm If TRUE (default), NA values are removed before calculating the mean square

difference. If FALSE, any missing values in either x or y result in NA returned.
Passed to mean(), see that for more info.

Value

the square root of the mean square difference between x and y, after removing NA comparisons
(cases where either is NA).

Examples

x <- rnorm(10)
y <- rnorm(10)
rmsd(x, y)

12 simtrait

simtrait simtrait: simulate complex traits from genotypes

Description

This package enables simulation of complex (polygenic and continuous) traits from a simulated or
real genotype matrix. The focus is on constructing the mean and covariance structure of the data to
yield the desired heritability. The main function is sim_trait(), which returns the simulated trait
and the vector of causal loci (randomly selected) and their coefficients. The causal coefficients are
constructed under two models: random coefficients (RC) and fixed effect sizes (FES). The function
cov_trait() computes the expected covariance matrix of the trait given the model parameters
(namely the desired heritability and the true kinship matrix). Infinitesimal traits (without causal
loci) can also be simulated using sim_trait_mvn().

Details

Package also provides some functions for evaluating genetic association approaches. pval_srmsd()
and pval_infl() quantify null p-value accuracy, while pval_aucpr() quantifies predictive power.

The recommended inputs are simulated genotypes with known ancestral allele frequencies. The
bnpsd package simulates genotypes for admixed individuals, resulting in a complex population
structure.

For real data it is necessary to estimate the kinship matrix. popkin::popkin()‘ provides high-
accuracy kinship estimates.

Author(s)

Maintainer: Alejandro Ochoa <alejandro.ochoa@duke.edu> (ORCID)

See Also

Useful links:

• https://github.com/OchoaLab/simtrait

• Report bugs at https://github.com/OchoaLab/simtrait/issues

Examples

construct a dummy genotype matrix
X <- matrix(

data = c(
0, 1, 2,
1, 2, 1,
0, 0, 1

),
nrow = 3,
byrow = TRUE

)
made up ancestral allele frequency vector for example

https://orcid.org/0000-0003-4928-3403
https://github.com/OchoaLab/simtrait
https://github.com/OchoaLab/simtrait/issues

simtrait 13

p_anc <- c(0.5, 0.6, 0.2)
desired heritability
herit <- 0.8
create a dummy kinship matrix for example
make sure it is positive definite!
kinship <- matrix(

data = c(
0.6, 0.1, 0.0,
0.1, 0.5, 0.0,
0.0, 0.0, 0.5

),
nrow = 3

)

create simulated trait and associated data
default is *random coefficients* (RC) model
obj <- sim_trait(X = X, m_causal = 2, herit = herit, p_anc = p_anc)
trait vector
obj$trait
randomly-picked causal locus indeces
obj$causal_indexes
regression coefficient vector
obj$causal_coeffs

fixed effect sizes (FES) model
obj <- sim_trait(X = X, m_causal = 2, herit = herit, p_anc = p_anc, fes = TRUE)

either model, can apply to real data by replacing `p_anc` with `kinship`
obj <- sim_trait(X = X, m_causal = 2, herit = herit, kinship = kinship)

covariance of simulated traits
V <- cov_trait(kinship = kinship, herit = herit)

draw simulated traits (matrix of replicates) from infinitesimal model
traits <- sim_trait_mvn(rep = 10, kinship = kinship, herit = herit)
traits

Metrics for genetic association approaches

simulate truly null p-values, which should be uniform
pvals <- runif(10)
for toy example, take these p-value to be truly causal
causal_indexes <- c(1, 5, 7)

calculate desired measures
this one quantifies p-value uniformity
pval_srmsd(pvals, causal_indexes)
related, calculates inflation factors
pval_infl(pvals)
this one quantifies predictive power
pval_aucpr(pvals, causal_indexes)

14 sim_trait

sim_trait Simulate a complex trait from genotypes

Description

Simulate a complex trait given a SNP genotype matrix and model parameters, which are minimally:
the number of causal loci, the heritability, and either the true ancestral allele frequencies used to
generate the genotypes or the mean kinship of all individuals. An optional minimum marginal
allele frequency for the causal loci can be set. The output traits have by default a zero mean and
unit variance (for outbred individuals), but those parameters can be modified. The code selects
random loci to be causal, constructs coefficients for these loci (scaled appropriately) and random
Normal independent non-genetic effects and random environment group effects if specified. There
are two models for constructing causal coefficients: random coefficients (RC; default) and fixed
effect sizes (FES; i.e., coefficients roughly inversely proportional to allele frequency; use fes =
TRUE). Suppose there are m loci and n individuals.

Usage

sim_trait(
X,
m_causal,
herit,
p_anc = NULL,
kinship = NULL,
mu = 0,
sigma_sq = 1,
labs = NULL,
labs_sigma_sq = NULL,
maf_cut = NA,
loci_on_cols = FALSE,
m_chunk_max = 1000,
fes = FALSE

)

Arguments

X The m-by-n genotype matrix (if loci_on_cols = FALSE, transposed otherwise),
or a BEDMatrix object. This is a numeric matrix consisting of reference allele
counts (in c(0, 1, 2, NA) for a diploid organism).

m_causal The desired number of causal loci.

herit The desired heritability (proportion of trait variance due to genetics).

p_anc The length-m vector of true ancestral allele frequencies. Optional but recom-
mended for simulations. Either this or kinship must be specified.

kinship The mean kinship value of the individuals in the data. The n-by-n kinship matrix
of the individuals in the data is also accepted. Optional but recommended for
real data. Either this or p_anc must be specified.

sim_trait 15

mu The desired parametric mean value of the trait (scalar, default 0).

sigma_sq The desired parametric variance factor of the trait (scalar, default 1). Corre-
sponds to the variance of an outbred individual.

labs Optional labels assigning individuals to groups, to simulate environment group
effects. Values can be numeric or strings, simply assigning the same values
to individuals in the same group. If vector (single environment), length must
be number of individuals. If matrix (multiple environments), individuals must
be along rows, and environments along columns. The environments are not
required to be nested. If this is non-NULL, then labs_sigma_sq must also be
given!

labs_sigma_sq Optional vector of environment effect variance proportions, one value for each
environment given in labs (a scalar if labs is a vector, otherwise its length
should be the number of columns of labs). Ignored unless labs is also given.
As these are variance proportions, each value must be non-negative and sum(labs_sigma_sq)
+ herit <= 1 is required so residual variance is non-negative.

maf_cut The optional minimum allele frequency threshold (default NA, no threshold).
This prevents rare alleles from being causal in the simulation. Threshold is
applied to the sample allele frequencies and not their true parametric values
(p_anc), even if these are available.

loci_on_cols If TRUE, X has loci on columns and individuals on rows; if FALSE (the default),
loci are on rows and individuals on columns. If X is a BEDMatrix object, loci
are always on the columns (loci_on_cols is ignored).

m_chunk_max BEDMatrix-specific, sets the maximum number of loci to process at the time. If
memory usage is excessive, set to a lower value than default (expected only for
extremely large numbers of individuals).

fes If TRUE, causal coefficients are inversely proportional to the square root of p_anc
* (1 - p_anc) (estimated when p_anc is unavailable), which ensures fixed ef-
fect sizes (FES) per causal locus. Signs (+/-) are drawn randomly with equal
probability. If FALSE (the default), random coefficients (RC) are drawn from a
standard Normal distribution. In both cases coefficients are rescaled to result in
the desired heritability.

Details

To center and scale the trait and locus coefficients vector correctly to the desired parameters (mean,
variance, heritability), the parametric ancestral allele frequencies (p_anc) must be known. This is
necessary since in the heritability model the genotypes are random variables (with means given by
p_anc and a covariance structure given by p_anc and the kinship matrix), so these genotype distri-
bution parameters are required. If p_anc are known (true for simulated genotypes), then the trait
will have the specified mean and covariance matrix in agreement with cov_trait(). To simulate
traits using real genotypes, where p_anc is unknown, a compromise that works well in practice is
possible if the mean kinship is known (see package vignette). We recommend estimating the mean
kinship using the popkin package!

Value

A named list containing:

16 sim_trait

• trait: length-n vector of the simulated trait

• causal_indexes: length-m_causal vector of causal locus indexes

• causal_coeffs: length-m_causal vector of coefficients at the causal loci

• group_effects: length-n vector of simulated environment group effects, or 0 (scalar) if not
simulated

However, if herit = 0 then causal_indexes and causal_coeffs will have zero length regardless
of m_causal.

See Also

cov_trait(), sim_trait_mvn()

Examples

construct a dummy genotype matrix
X <- matrix(

data = c(
0, 1, 2,
1, 2, 1,
0, 0, 1

),
nrow = 3,
byrow = TRUE

)
made up ancestral allele frequency vector for example
p_anc <- c(0.5, 0.6, 0.2)
made up mean kinship
kinship <- 0.2
desired heritability
herit <- 0.8

create simulated trait and associated data
default is *random coefficients* (RC) model
obj <- sim_trait(X = X, m_causal = 2, herit = herit, p_anc = p_anc)

trait vector
obj$trait
randomly-picked causal locus indexes
obj$causal_indexes
regression coefficients vector
obj$causal_coeffs

fixed effect sizes (FES) model
obj <- sim_trait(X = X, m_causal = 2, herit = herit, p_anc = p_anc, fes = TRUE)

either model, can apply to real data by replacing `p_anc` with `kinship`
obj <- sim_trait(X = X, m_causal = 2, herit = herit, kinship = kinship)

sim_trait_mvn 17

sim_trait_mvn Simulate traits from a kinship matrix under the infinitesimal model

Description

Simulate matrix of trait replicates given a kinship matrix and model parameters (the desired heri-
tability, group effects, total variance scale, and mean). Although these traits have the covariance
structure of genetic traits, and have heritabilities that can be estimated, they do not have causal loci
(an association test against any locus should fail). Below n is the number of individuals.

Usage

sim_trait_mvn(
rep,
kinship,
herit,
mu = 0,
sigma_sq = 1,
labs = NULL,
labs_sigma_sq = NULL,
tol = 1e-06

)

Arguments

rep The number of replicate traits to simulate. Simulating all you need at once is
more efficient than simulating each separately (the kinship matrix is eigende-
composed once per run, shared across replicates).

kinship The n-by-n kinship matrix of the individuals to simulate from.

herit The desired heritability (proportion of trait variance due to genetics).

mu The desired parametric mean value of the trait (scalar, default 0).

sigma_sq The desired parametric variance factor of the trait (scalar, default 1). Corre-
sponds to the variance of an outbred individual.

labs Optional labels assigning individuals to groups, to simulate environment group
effects. Values can be numeric or strings, simply assigning the same values
to individuals in the same group. If vector (single environment), length must
be number of individuals. If matrix (multiple environments), individuals must
be along rows, and environments along columns. The environments are not
required to be nested. If this is non-NULL, then labs_sigma_sq must also be
given!

labs_sigma_sq Optional vector of environment effect variance proportions, one value for each
environment given in labs (a scalar if labs is a vector, otherwise its length
should be the number of columns of labs). Ignored unless labs is also given.
As these are variance proportions, each value must be non-negative and sum(labs_sigma_sq)
+ herit <= 1 is required so residual variance is non-negative.

18 sim_trait_mvn

tol Tolerance factor for an internal test of positive semi-definiteness of the trait
covariance matrix. Procedure fails if any eigenvalues are smaller than -tol
times the absolute value of the largest eigenvalue. Increase this value only if
you are getting errors but you’re sure your covariance matrix (the output of
cov_trait()) is positive semi-definite.

Value

A rep-by-n matrix containing the simulated traits along the rows, individuals along the columns.

See Also

cov_trait(), sim_trait()

Examples

create a dummy kinship matrix
make sure it is positive definite!
kinship <- matrix(

data = c(
0.6, 0.1, 0.0,
0.1, 0.5, 0.0,
0.0, 0.0, 0.5

),
nrow = 3

)
draw simulated traits (matrix)
traits <- sim_trait_mvn(rep = 10, kinship = kinship, herit = 0.8)
traits

Index

allele_freqs, 2

colMeans(), 2
cov_trait, 3
cov_trait(), 5, 12, 15, 16, 18

herit_loci, 5

mean(), 11

popkin::popkin(), 12
PRROC::pr.curve(), 6
pval_aucpr, 6
pval_aucpr(), 8, 12
pval_infl, 7
pval_infl(), 10–12
pval_power_calib, 8
pval_power_calib(), 6
pval_srmsd, 9
pval_srmsd(), 7, 11, 12
pval_type_1_err, 10
pval_type_1_err(), 7, 10

rmsd, 11
rmsd(), 10
rowMeans(), 2

sim_trait, 14
sim_trait(), 3–5, 12, 18
sim_trait_mvn, 17
sim_trait_mvn(), 3, 4, 12, 16
simtrait, 12
simtrait-package (simtrait), 12
sort(), 9

19

	allele_freqs
	cov_trait
	herit_loci
	pval_aucpr
	pval_infl
	pval_power_calib
	pval_srmsd
	pval_type_1_err
	rmsd
	simtrait
	sim_trait
	sim_trait_mvn
	Index

